Skip to main content

Principles of Frequency-Domain Fluorescence Spectroscopy and Applications to Cell Membranes

  • Chapter
Book cover Fluorescence Studies on Biological Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 13))

Abstract

Fluorescence spectroscopy is often used to study the dynamic and hydrodynamic properties of proteins, membranes, and nucleic acids (Cundall and Dale, 1980; Lakowicz, 1983, 1986; Visser, 1985; Demchenko, 1986). More recently, the sensitivity of fluorescence detection, and advances in two-di-mensional detectors have resulted in increased emphasis on the use of fluo-rescence microscopy to obtain a more detailed understanding of cellular phenomena (Taylor et al., 1986). An unfavorable characteristic of fluorescence is the relatively low degree of specificity. The emission spectra of fluorophores often overlap on the wavelength scale, and the emission spectra of different fluorophores are often similar in shape. A further complication is that the emission may be complex due to the presence of multiple environments in a membrane, several fluorophores in a macromolecule, or the intrinsically complex emission of macromolecules or even simple molecules like tryptophan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belford, G. G., Belford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69: 1392–1393.

    Article  PubMed  CAS  Google Scholar 

  • Barkley, M. D., Kowalczyk, A. A., and Brand, L., 1978, Fluorescence decay studies of anisotropic rotations of small molecules, J. Chem. Phys. 75: 3581–3593.

    Article  Google Scholar 

  • Bevington, P. R., 1969, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.

    Google Scholar 

  • Chuang, T. J., and Eisenthal, K. B., 1972, Theory of fluorescence depolarization by anisotropic rotational diffusion, J. Chem. Phys. 57: 5094–5097.

    Article  CAS  Google Scholar 

  • Cundall, R. B., and Dale, R. E. (eds.), 1980, Time-resolved fluorescence spectroscopy in biochemistry and biology, Plenum Press, New York.

    Google Scholar 

  • Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotational relaxation of the “microviscosity” probe diphenylhexatriene in paraffin oil and egg lecithin vesicles, J. Biol. Chem. 252: 7500–7510.

    PubMed  CAS  Google Scholar 

  • Demchenko, A. P., 1986, Ultraviolet Spectroscopy of Proteins, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Easter, J. H., De Toma, R. P., and Brand, L., 1976, Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-α-egg lecithin vesicles, Biophys. J. 16: 571–583.

    Article  PubMed  CAS  Google Scholar 

  • Faucon, J. F., and Lakowicz, J. R., 1987, Anisotropy decay of diphenylhexatriene in melittin-phospholipid complexes by multi-frequency phase-modulation fluorometry, Arch. Biochem. Biophys. 252: 245–258.

    Article  PubMed  CAS  Google Scholar 

  • Flory, P., 1969, Statistical Mechanics of Chain Molecules, Interscience, New York.

    Google Scholar 

  • Gaviola, Z., 1926, Ein Fluorometer. Apparat zur Messung von Fluoreszenzabklingungszeiten, Z. Phys. 42: 853–861.

    Google Scholar 

  • Gratton, E., 1986, ISS, Inc., Urbana, Illinois.

    Google Scholar 

  • Gratton, E., and Limkemann, M., 1983, Picosecond fluorescence spectroscopy by time-correlated single-photon counting, Biophys. J. 44: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Gratton, E., and Lopez-Delgado, R., 1980, Measuring fluorescence decay times by phase-shift and modulation techniques using the high harmonic content of pulsed light sources, Nuovo Cimento B56: 110–124.

    Google Scholar 

  • Gratton, E., James, D. M., Rosato, N., and Weber, G., 1984a, Multifrequency cross-correlation phase fluorometer using synchrotron radiation, Rev. Sci. Instrum. 55: 486–494.

    Article  CAS  Google Scholar 

  • Gratton, E., Limkemann, M., Lakowicz, J. R., Maliwal, B. P., Cherek, H., and Laczko, G., 1984b, Resolution of mixtures of fluorophores using variable-frequency phase and modulation data, Biophys. J. 46: 479–486.

    Article  PubMed  CAS  Google Scholar 

  • Gryczynski, I., Cherek, H., Laczko, G., and Lakowicz, J. R., 1987, Enhanced resolution of anisotropic rotational diffusion by multi-wavelength frequency-domain fluorometry and global analysis, Chem. Phys. Lett. 135: 193–199.

    Article  CAS  Google Scholar 

  • Heyn, M. P., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108: 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Jameson, D. M., and Gratton, E., 1983, Analysis of heterogeneous fluorescence by multifrequency phase and modulation fluorometry, in New Directions in Molecular Luminescence (D. Eastwood, ed.), pp. 67–81, American Society for Testing and Materials, Philadelphia.

    Chapter  Google Scholar 

  • Jameson, D. M., and Weber, G., 1981, Resolution of the pH-dependent heterogeneous fluorescence decay of tryptophan by phase and modulation measurements, J. Phys. Chem. 85: 953–958.

    Article  CAS  Google Scholar 

  • Joshi, N., Johnson, M. L., Gryczynski, I., and Lakowicz, J. R., 1987, Radiation boundary conditions in collisional quenching of fluorescence: Resolution by frequency-domain fluorometry, Chem. Phys. Lett. 135: 200–207.

    Article  CAS  Google Scholar 

  • Karplus, M., 1986, Internal dynamics of proteins, in Methods in Enzymology (C. H. W. Hirs and S. N. Timasheff, eds.), Vol. 131, pp. 283–307, Academic Press, New York.

    Google Scholar 

  • Kaminov, I. P., 1974, An Introduction to Electro-optic Devices, Academic Press, New York.

    Google Scholar 

  • Kawato, S., Kinosita, K., and Ikegami, A., 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques, Biochemistry 16: 2319–2324.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., Kawato, S., and Ikegami, A., 1977, Construction of a nanosecond fluorometric system for applications to biological samples at cell or tissue levels, Biophys. J. 20: 289–305.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, S., and Kushida, T., 1985, Picosecond fluorescence spectroscopy by time-correlated single-photon counting, Anal. Instrum. 14: 503–524.

    Article  Google Scholar 

  • Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  • Lakowicz, J. R., 1986, Fluorescence studies of the dynamics of proteins and membranes, in Methods in Enzymology (C. H. W. Hirs and S. N. Timasheff, eds.), Vol. 131, pp. 518–567, Academic Press, New York.

    Google Scholar 

  • Lakowicz, J. R., and Balter, A., 1982, Theory of phase-modulation fluorescence spectroscopy for excited state processes, Biophys. Chem. 16: 99–115.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., and Cherek, H., 1981, Fluorescence spectroscopic investigations of the dynamic properties of proteins, membranes and nucleic acids, J. Biochem. Biophys. Methods 5: 19–35.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., and Knutson, J. R., 1980, Hindered depolarizing rotations of perylene in lipid bilayers; detection by lifetime-resolved anisotropy measurements, Biochemistry 19: 905–911.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., and Maliwal, B. P., 1985, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21: 61–78.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., and Prendergast, F. G., 1978, Detection of hindered rotation of 1,6-diphenyl-1,3,5-hexatriene in lipid bilayers by differential polarized phase fluorometry, Biophys. J. 23: 213–231.

    Article  Google Scholar 

  • Lakowicz, J. R., Bevan, D. R., Cherek, H., Balter, A., and Maliwal, B. P., 1983, Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes, Biochemistry 22: 5714–5722.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R., Cherek, H., Laczko, G., and Gratton, E., 1984a, Time-resolved fluorescence emission spectra of labeled phospholipid vesicles, as observed using frequency-domain fluorometry, Biochim. Biophys. Acta 111: 183–193.

    Google Scholar 

  • Lakowicz, J. R., Cherek, H., Maliwal, B., Laczko, G., and Gratton, E., 1984b, Determination of time-resolved fluorescence emission spectra and anisotropics of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry, J. Biol. Chem. 259: 10967–10972.

    PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Laczko, G., Cherek, H., Gratton, E., and Limkemann, M., 1984C., Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data, Biophys. J. 46: 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Cherek, H., Maliwal, B. P., and Gratton, E., 1985, Time-resolved fluorescence anisotropics of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase and modulation fluorometry, Biochemistry 24: 376–383.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Laczko, G., Gryczynski, I., and Cherek, H., 1986a, Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry, J. Biol Chem. 261: 2240–2245.

    PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1986b, A 2 GHz frequency-domain fluorometer, Rev. Sci. Instrum. 57: 2499–2506.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1986C., Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry, Biophys. Chem. 24: 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1987a, Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2 GHz frequency-domain fluorometry, Biochemistry 26: 82–90.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Szmacinski, H., and Gryczynski, I., 1987b, Picosecond resolution of indole anisotropy decays and spectral relaxation by 2 GHz frequency-domain fluorometry, Photochem. Photobiol. 47: 31–41.

    Article  Google Scholar 

  • Lakowicz, J. R., Joshi, N. B., Johnson, M. L., Szmacinski, H., and Gryczynski, I., 1987c, Diffusion coefficients of quenchers in proteins from transient effects in the intensity decays, J. Biol. Chem. 262: 10907–10910.

    PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987d, Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples; applications to anisotropic rotations and protein dynamics, Biophys. J. 51: 755–768.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Johnson, M. L., Wiczk, W., Bhat, A., and Steiner, R. F., 1987e, Resolution of a distribution of distances by fluorescence energy transfer and frequency-domain fluorometry, Chem. Phys. Lett. 138: 587–593.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R., Johnson, M. L., Gryczynski, I., Joshi, N., and Laczko, G., 1987f, Transient effects in fluorescence quenching measured by 2 GHz frequency-domain fluorometry, J. Phys. Chem. 91: 3277–3285.

    Article  CAS  Google Scholar 

  • Laws, J. R., and Brand, L., 1979, Analysis of two-state excited state reactions. The fluorescence decay of 2-naphthol, J. Phys. Chem. 83: 795–802.

    Article  CAS  Google Scholar 

  • Laws, W. R., Ross, J. B. A., Wyssbrod, H. R., Beechem, J. M., Brand, L., and Sutherland, J. C., 1986, Time-resolved fluorescence and 1H NMR studies of tyrosine and tyrosine analogues: Correlation of NMR-determined rotamer populations and fluorescence kinetics, Biochemistry 25: 599–607.

    Article  PubMed  CAS  Google Scholar 

  • Libertini, L. J., and Small, E. W., 1985, The intrinsic tyrosine fluorescence of histone H1—steady-state and fluorescence decay studies reveal heterogeneous emission, Biophys. J. 47: 765–772.

    Article  PubMed  CAS  Google Scholar 

  • Malinowski, E. R., and Howery, D. G., 1980, Factor Analysis in Chemistry, Wiley-Interscience, New York.

    Google Scholar 

  • Maliwal, B. P., and Lakowicz, J. R., 1986, Resolution of complex anisotropy decays by variable frequency phase-modulation fluorometry: A simulation study, Biochim. Biophys. Acta 873: 161–172.

    Article  PubMed  CAS  Google Scholar 

  • Maliwal, B. P., Hermetter, A., and Lakowicz, J. R., 1986, A study of protein dynamics from anisotropy decays obtained by variable frequency phase-modulation fluorometry: Internal motions of N-methylanthraniloyl melittin, Biochim. Biophys. Acta 873: 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Mantulin, W. W., and Weber, G., 1977, Rotational anisotropy and solvent-fluorophore bonds; an investigation by differential polarized phase fluorometry, J. Chem. Phys. 66: 4092–4099.

    Article  CAS  Google Scholar 

  • Marchiarullo, M. A., and Ross, R. T., 1985, Resolution of component spectra for spinach chloroplasts and green algae by means of factor analysis, Biochim. Biophys. Acta 807: 52–63.

    Article  CAS  Google Scholar 

  • Merkelo, H. S., Hartman, S. R., Mar, T., Singhal, G. S., and Govindjee, 1969, Mode-locked lasers: Measurements of very fast radiative decay in fluorescent systems, Science 164: 301–303.

    Article  PubMed  CAS  Google Scholar 

  • Munro, I., Pecht, I., and Stryer, L., 1979, Subnanosecond motions of tryptophan residues in proteins, Proc. Natl. Acad. Sci. U.S.A. 761: 156–60.

    Google Scholar 

  • O’Connor, D. V., and Phillips, D., 1984, Time Correlated Single Photon Counting, Academic Press, New York.

    Google Scholar 

  • Parasassi, T., Conti, F., Glaser, M., and Gratton, E., 1984, Detection of phospholipid phase separation, J. Biol. Chem. 259: 14011–14017.

    PubMed  CAS  Google Scholar 

  • Peters, C. J., 1965, Gigacycle-bandwidth coherent-light traveling wave amplitude modulator, Proc. IEEE 53: 455–460.

    Article  Google Scholar 

  • Steinberg, I. Z., 1971, Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides, Annu. Rev. Biochem. 40: 83–114.

    Article  PubMed  CAS  Google Scholar 

  • Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47: 819–916.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D. L., Waggoner, A. S., Murphy, R. F., Lanni, F., and Birge, R. R. (eds.), 1986, Applications of Fluorescence in the Biomedical Sciences, Alan R. Liss, New York.

    Google Scholar 

  • Taylor, J. R., 1982, An Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements, University Science Books, Mill Valley, CA.

    Google Scholar 

  • Veatch, W. R., and Stryer, L., 1977, The dimeric nature of the Gramicidin A transmembrane channel: Conductance and fluorescence energy transfer studies of hybrid channels, J. Mol. Biol. 177: 1109–1113.

    Article  Google Scholar 

  • Visser, A. J. W. G. (ed.), 1985, Special symposium on time-resolved fluorescence spectroscopy, in Analytical Instrumentation, Vol. 14, pp. 193–566, Marcel Dekker, New York.

    Google Scholar 

  • White, G., and Chin, G. M., 1972, Traveling wave electro-optic modulators, Opt. Commun. 5: 374–379.

    Article  Google Scholar 

  • Weber, G., 1981, Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements, J. Phys. Chem. 85: 949–953.

    Article  CAS  Google Scholar 

  • Yamazaki, I., Tamai, N., Kume, H., Tsuchiya, H., and Oba, K., 1985, Microchannel-plate photomultiplier applicability to the time-correlated photon-counting method, Rev. Sci. Instrum. 56: 1187–1194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1988). Principles of Frequency-Domain Fluorescence Spectroscopy and Applications to Cell Membranes. In: Hilderson, H.J. (eds) Fluorescence Studies on Biological Membranes. Subcellular Biochemistry, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9359-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9359-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9361-0

  • Online ISBN: 978-1-4613-9359-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics