Fluorescent Probes for the Acetylcholine Receptor Surface Environments

  • Marino Martinez-Carrion
  • Jeffrey Clarke
  • Jose-Manuel Gonzalez-Ros
  • Jose-Carlos Garcia-Borron
Part of the Subcellular Biochemistry book series (SCBI, volume 13)


The acetylcholine receptor (AchR) was the first neurotransmitter receptor to be identified and purified in an active form. It is a complex transmembrane glycoprotein present in the postsynaptic side of the neuromuscular junctions. When an action potential reaches the motor nerve terminals, acetylcholine is released into the synaptic cleft, where its local concentration can rise transiently to 10-4 to 10-3 M. Binding of Ach to specific sites located on the extracellular domains of the AchR molecules triggers the opening of short-lived cation channels, thus increasing the permeability of the postsynaptic membrane and causing the muscle fiber membrane to be depolarized beyond a critical threshold. The final result of this chain of events is muscle contraction. The AchR is present in high amounts in the electric organ of certain fishes. Using Torpedo (electric ray) electroplax as the starting material, one can purify milligram quantities of active protein, as well as substantial amounts of its constituent subunits. Moreover, a group of closely related protein toxins (α-neurotoxins) have been isolated from the venom of several Elapid snakes, which bind to the AchR with dissociation constants in the nanomolar to subnanomolar range [for review see Karlsson (1979) and Low (1979)]. The high affinity of α-neurotoxins for AchR, combined with their extreme specificity, has greatly facilitated the purification and characterization of AchR from different sources.


Lipid Bilayer Fluorescent Probe Acetylcholine Receptor Cholinergic Agonist Transmembrane Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



anthracene-1,5-disulfonic acid


acetylcholine receptor


8-amino-l,3,6-naphthalene trisulfonate
















1,3,6,8-pyrene tetrasulfonate


pyrene-1-sulfonyl azide






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. J., Walter, P., and Blobel, G., 1982, Signal-recognition protein is required for the integration of acetylcholine receptor δ subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane, J. Cell Biol. 93: 501–506.PubMedCrossRefGoogle Scholar
  2. Andreasen, T. J., and McNamee, M. G., 1977, Phospholipase A inhibition of acetylcholine receptor function in Torpedo californica membrane vesicles, Biochem. Biophys. Res. Commun. 79: 958–965.PubMedCrossRefGoogle Scholar
  3. Andreasen, T. J., Doerge, D. R., and McNamee, M. G., 1979, Effects of phospholipase A2 on the binding and ion permeability control properties of the acetylcholine receptor, Arch. Biochem. Biophys. 194: 468–480.PubMedCrossRefGoogle Scholar
  4. Andrich, M. P., and Vanderkooi, J. M., 1976, Temperature dependence of l,6-diphenyl-l,3,5- hexatriene fluorescence in phospholipid artifical membranes, Biochemistry 15: 1257–1261.PubMedCrossRefGoogle Scholar
  5. Anholt, R., Lindstrom, J., and Montai, M., 1981, Stabilization of acetylcholine receptor channels by lipids on cholate solution and during reconstitution in vesicles, J. Biol Chem. 256: 4377–4387.PubMedGoogle Scholar
  6. Barrantes, F. J., 1983, Recent developments in the structure and function of the acetylcholine receptor, Int. Rev. Neurobiol. 24: 259–341.PubMedCrossRefGoogle Scholar
  7. Brisson, A., and Unwin, P. M. T., 1985, Quaternary structure of the acetylcholine receptor, Nature 315: 474–477.PubMedCrossRefGoogle Scholar
  8. Cash, D. J., and Hess, G. P., 1981, Quenched-flow technique with plasma membrane vesicles: Acetylcholine receptor mediated transmembrane ion flux, Anal. Biochem. 112: 39–51.PubMedCrossRefGoogle Scholar
  9. Changeux, J. P., Devillers-Thiery, A., and Chenouilli, P., 1984, Acetylcholine receptor: An al-losteric protein, Science 225: 1335–1345.PubMedCrossRefGoogle Scholar
  10. Clarke, J. H., and Martinez-Carrion, M., 1986, Labeling of functionally sensitive sulfhydryl containing domains of acetylcholine receptor from Torpedo californica membranes, J. Biol. Chem. 261: 10063–10072.PubMedGoogle Scholar
  11. Clarke, J. H., Garcia-Borron, J. C., and Martinez-Carrion, M., 1987, (l-Pyrene)sulfonyl azide is a fluorescent probe for measuring the transmembrane topology of acetylcholine receptor subunits, Arch. Biochem. Biophys. 256: 101–109.PubMedCrossRefGoogle Scholar
  12. Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor 7 subunit, Proc. Natl. Acad. Sci. U.S.A. 80: 1111–1115.PubMedCrossRefGoogle Scholar
  13. Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic acetylcholine receptor: Correlation of molecular structure with functional properties, Annu. Rev. Biochem. 51: 491–530.PubMedCrossRefGoogle Scholar
  14. Criado, M., Eibl, H., and Barrantes, F. J., 1982, Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist induced state transitions in lipid vesicles, Biochemistry 21: 3622–3629.PubMedCrossRefGoogle Scholar
  15. Criado, M., Eibl, H., and Barrantes, F. J., 1984, Functional properties of the acetylcholine receptor incorporated in model lipid membranes, J. Biol. Chem. 259: 9188–9198.PubMedGoogle Scholar
  16. Dalziel, A. W., Rollins, E. S., and McNamee, M. G., 1980, The effect of cholesterol on agonist induced flux in reconstituted acetylcholine receptor vesicles, FEBS Lett. 122: 193–196.PubMedCrossRefGoogle Scholar
  17. Damle, V. N., McLaughlin, M., and Karlin, A., 1978, Bromoacetylcholine as an affinity label of the acetylcholine receptor from Torpedo californica, Biochem. Biophys. Res. Commun. 84: 845–851.PubMedCrossRefGoogle Scholar
  18. Devillers-Thiery, A., Giraudat, J., Bentaboulet, M., and Changeux, J. P., 1983, Complete mRNA sequence of the acetylcholine binding subunit from Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. U.S.A. 80: 2067–2071.PubMedCrossRefGoogle Scholar
  19. Donnelly, D., Mihovilovic, M., Gonzalez-Ros, J. M., Ferragut, J. A., Richman, D., and Martinez-Carrion, M., 1984, A noncholinergic site directed monoclonal antibody can impair agonist induced ion flux in Torpedo californica acetylcholine receptor, Proc. Natl. Acad. Sci. U. S.A. 81: 7999–8003.PubMedCrossRefGoogle Scholar
  20. Ellena, J. F., Blazing, M. A., and McNamee, M. G., 1983, Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor, Biochemistry 22: 5523–5535.PubMedCrossRefGoogle Scholar
  21. Farach, M. C., and Martinéz-Carrion, M., 1983, A differential scanning calorimetry study of acetylcholine receptor-rich membranes from Torpedo californica, J. Biol. Chem. 258: 4166–4170.PubMedGoogle Scholar
  22. Finer-Moore, J., and Stroud, R., 1984, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81: 155–159.PubMedCrossRefGoogle Scholar
  23. Fong, T. M., and McNamee, M. G., 1986, Correlation between acetylcholine receptor function and structural properties of membranes, Biochemistry 25: 830–840.PubMedCrossRefGoogle Scholar
  24. Giraudat, J., Montecucco, C., Bisson, R., and Changeux, J. P., 1985, Transmembrane topology of acetylcholine receptor subunits probed with photoreactive phospholipids, Biochemistry 24: 3121–3127.PubMedCrossRefGoogle Scholar
  25. Gonzalez-Ros, J. M., Calvo-Fernandez, P., Sator, V., and Martinez-Carrion, M., 1979a, Pyrene-sulfonyl azide as a fluorescent label for the study of protein-lipid boundaries of acetylcholine receptor in membranes, J. Supramol. Struct. 11: 327–338.PubMedCrossRefGoogle Scholar
  26. Gonzalez-Ros, J. M., Sator, V., Calvo-Fernandez, P., and Martinez-Carrion, M., 1979b, Pyrenesulfonyl azide: A covalent probe permitting in vitro desensitization of labeled acetylcholine receptor rich membrane fragments from Torpedo californica, Biochem. Biophys. Res. Commun. 87: 214–220.PubMedCrossRefGoogle Scholar
  27. Gonzalez-Ros, J. M., Llanillo, M., Paraschos, A., and Martinez-Carrion, M., 1982, Lipid environment of acetylcholine receptor from Torpedo californica, Biochemistry 21: 3467–3474.PubMedCrossRefGoogle Scholar
  28. Gonzalez-Ros, J. M., Farach, M. C., and Martinez-Carrion, M., 1983, Ligand induced effects at regions of acetylcholine receptor accessible to membrane lipids, Biochemistry 22: 3807–3811.PubMedCrossRefGoogle Scholar
  29. Gonzalez-Ros, J. M., Ferragut, J. A., and Martinez-Carrion, M., 1984, Binding of anti-acetylcho-line receptor antibodies inhibits the acetylcholine receptor mediated cation flux, Biochem. Biophys. Res. Commun. 120: 368–375.PubMedCrossRefGoogle Scholar
  30. Guy, R., 1984, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations, Biophys. J. 45: 249–261.PubMedCrossRefGoogle Scholar
  31. Heidmann, T., Sobel, A., Popot, J. L., and Changeux, J. P., 1980, Reconstitution of a functional acetylcholine receptor. Conservation of the conformational and allosteric transitions and recovery of the permeability response; role of lipids, Eur. J. Biochem. 110: 35–55.PubMedCrossRefGoogle Scholar
  32. Hess, G. P., Cash, D. J., and Aoshima, H., 1979, Acetylcholine receptor controlled ion fluxes in membrane vesicles investigated by fast reaction techniques, Nature 282: 329–331.PubMedCrossRefGoogle Scholar
  33. Hess, G. P., Aoshima, H., Cash, D. J., and Lenchitz, B., 1981, Specific reaction rate of acetylcholine receptor controlled ion translocation: A comparison of measurements with membrane vesicles and with muscle cells, Proc. Natl. Acad. Sci. U.S.A. 78: 1361–1365.PubMedCrossRefGoogle Scholar
  34. Hess, G. P., Pasquale, F. B., Walker, J. W., and McNamee, M. G., 1982, Comparison of acetylcholine receptor controlled cation flux in membrane vesicles from Torpedo californica and Electrophorus electricus: Chemical kinetics measurements in the millisecond region, Proc. Natl. Acad. Sci. U.S.A. 79: 963–967.PubMedCrossRefGoogle Scholar
  35. Horn, R., and Stevens, C. F., 1980, Relation between structure and function of on channels, Comments Mol. Cell. Biophys. 1: 57–68.Google Scholar
  36. Huang, L. Y. M., Catterall, W. A., and Ehrenstein, G., 1978, Selectivity of cations and nonelec-trolytes for acetylcholine activated channels in cultured muscle cells, J. Gen. Physiol. 71: 397–410.PubMedCrossRefGoogle Scholar
  37. Kanaoka, Y., Machida, M., Kokubun, H., and Sekine, T., 1968, Fluorescence and structure of proteins as measured by incorporation of fluorophore. III. Fluorescence characteristics of N-[p(2-benzoxazolyl)phenyl] maleimide and the derivatives, Chem. Pharm. Bull. (Tokyo) 16: 1747–1753.Google Scholar
  38. Kao, P. N., and Karlin, A., 1986, Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues, J. Biol. Chem. 261: 8085–8088.PubMedGoogle Scholar
  39. Karlsson, E., 1979, Chemistry of protein toxins in snake venoms, in Handbook of Experimental Pharmacology (Ch.-Y. Lee, ed.), Vol. 52, pp. 159–212 (Springer-Verlag, Berlin).Google Scholar
  40. Karpen, J. W., Sachs, A. B., Cash, D. J., Pasquale, E. B., and Hess, G. P., 1983, Direct spectrophotometric detection of cation flux in membrane vesicles: Stopped-flow measurements of acetylcholine receptor mediated ion flux, Anal. Biochem. 135: 83–94.PubMedCrossRefGoogle Scholar
  41. Kasai, M., and Changeux, J. P., 1971, In vitro excitation of purified membrane fragments by cholinergic agonists, J. Membr. Biol. 6: 1–23.CrossRefGoogle Scholar
  42. Kistler, J., Stroud, R. M., Klymkowsky, M. W., Lalancette, R. A., and Fairclough, R. H., 1982, Structure and function of an acetylcholine receptor, Biophys. J. 37: 371–383.PubMedCrossRefGoogle Scholar
  43. Klymkowsky, M. W., and Stroud, R. M., 1979, Immunospecific identification and three dimensional structure of a membrane bound acetylcholine receptor from Torpedo californica, J. Mol. Biol. 128: 319–334.PubMedCrossRefGoogle Scholar
  44. Klymkowsky, M. W., Heuser, J. E., and Stroud, R. M., 1980, Protease effects on the structure of acetylcholine receptor membranes from Torpedo californica, J. Cell Biol. 85: 823–838.PubMedCrossRefGoogle Scholar
  45. Lewis, C. A., 1979, Ion concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction, J. Physiol. 286: 417–445.PubMedGoogle Scholar
  46. Lindstrom, J., Gullick, W., Conti-Tronconi, B., and Ellisman, M., 1980, Proteolytic nicking of the acetylcholine receptor, Biochemistry 19: 4791–4795.PubMedCrossRefGoogle Scholar
  47. Lindstrom, J., Criado, M., Hochschwender, S., Fox, J. L., and Sarin, V., 1984, Immunochemical tests of acetylcholine receptor subunit models, Nature 311: 573–575.PubMedCrossRefGoogle Scholar
  48. Low, B. W., 1979, The three dimensional structure of postsynaptic snake neurotoxins: Consideration of structure and function, in Handbook of Experimental Pharmacology (Ch.-Y. Lee, ed.), Vol. 52, pp. 213–257, Springer-Verlag, Berlin.Google Scholar
  49. Martinez-Carrion, M., Sator, V., and Raftery, M. A., 1975, The molecular weight of an acetylcholine receptor isolated from Torpedo californica, Biochem. Biophys. Res. Commun. 65: 129–137.PubMedCrossRefGoogle Scholar
  50. Martinez-Carrion, M., Gonzalez-Ros, J. M., Llanillo, M., and Paraschos, A., 1982, Acetylcholine receptors from electroplax membranes: In vitro and in situ properties, in Advances in Experimental Medicine and Biology (F. Bossa, E. Chiancone, A. Finnazi-Agro, and R. Strom, eds.), Vol. 148, pp. 209–224, Plenum Press, New York.Google Scholar
  51. Martinez-Carrion, M., Gonzalez-Ros, J. M., Mattingly, J. R., Ferragut, J. A., Farach, M. C., and Donnelly, D., 1984, Fluorescent probes for the study of acetylcholine receptor function, Biophys. J. 45: 141–143.PubMedCrossRefGoogle Scholar
  52. Middlemas, D. S., and Raftery, M. A., 1983, Exposure of the acetylcholine receptor to the lipid bilayer, Biochem. Biophys. Res. Commun. 115: 1075–1082.PubMedCrossRefGoogle Scholar
  53. Mihovilovic, M., and Richman, D. P., 1984, Modification of α-bungarotoxin and cholinergic ligand binding properties of Torpedo acetylcholine receptor by a monoclonal anti-acetylcholine receptor antibody, J. Biol. Chem. 259: 15051–15059.PubMedGoogle Scholar
  54. Moore, H. P., and Raftery, M. A., 1979, Reversible and irreversible interactions of an alkylating agonist with Torpedo californica acetylcholine receptor, Biochemistry 10: 1862–1867.CrossRefGoogle Scholar
  55. Moore, H. P., and Raftery, M. A., 1980, Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance, Proc. Natl. Acad. Sci. U.S.A. 77: 4509–4513.PubMedCrossRefGoogle Scholar
  56. Neubig, R. R., and Cohen, J. B., 1980, Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: Agonist dose response relations measured at second and millisecond times, Biochemistry 19: 2770–2779.PubMedCrossRefGoogle Scholar
  57. Neumann, D., Barchan, D., Safran, A., Gershoni, J. M., and Fuchs, S., 1986, Mapping of the α-bungarotoxin binding site within the subunit of acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 83: 3008–3011.PubMedCrossRefGoogle Scholar
  58. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of a subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299: 793–797.PubMedCrossRefGoogle Scholar
  59. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983a, Primary structure of the β and δ subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences, Nature 301: 251–255.PubMedCrossRefGoogle Scholar
  60. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983b, Structural homology of Torpedo californica acetylcholine receptor subunits, Nature 302: 528–532.PubMedCrossRefGoogle Scholar
  61. Paraschos, A., Gonzalez-Ros, J. M., and Martinez-Carrion, M., 1983, Absorption filtration: A tool for the measurement of ion tracer flux in native membranes and reconstituted lipid vesicles, Biochem. Biophys. Acta. 733: 223–233.PubMedCrossRefGoogle Scholar
  62. Pick, U., 1981, Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures, Arch. Biochem. Biophys. 212: 186–194.PubMedCrossRefGoogle Scholar
  63. Popot, J. L., and Changeux, J. P., 1984, Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein, Physiol. Rev. 64: 1162–1239.PubMedGoogle Scholar
  64. Prendergast, F. G., Haugland, R. P., Callahan, P. J., and Bodeau, D., 1981, l-[4-(Trimethylamino)phenyl]-6-phenylhexa-l,3,5-triene: Synthesis fluorescence properties, and use as a fluorescence probe of lipid bilayers, Biochemistry 20: 7333–7338.PubMedCrossRefGoogle Scholar
  65. Quast, U., Schimerlik, M., Lee, T., Witzemann, V., Blanchard, S., and Raftery, M. A., 1978,Google Scholar
  66. Ligand induced conformation changes in Torpedo californica membrane bound acetylcholine receptor, Biochemistry 17: 2405–2414.Google Scholar
  67. Raftery, M. A., Schmidt, J., Clark, D. G., and Wolcott, R. G., 1971, Demonstration of a specific α-bungarotoxin binding component in Electrophorus electricus electroplax membranes, Biochem. Biophys. Res. Commun. 65: 1622–1629.CrossRefGoogle Scholar
  68. Ratnam, M., and Lindstrom, J., 1984, Structural features of the nicotinic acetylcholine receptor revealed by antibodies to synthetic peptides, Biochem. Biophys. Res. Commun. 122: 1225–1233.PubMedCrossRefGoogle Scholar
  69. Ratnam, M., Nguyen, D., Rivier, J., Sargent, P., and Lindstrom, J., 1986, Transmembrane topography of nicotinic acetylcholine receptor: Immunochemical tests contradict theoretical predictions based on hydrophobicity profiles, Biochemistry 25: 2633–2643.PubMedCrossRefGoogle Scholar
  70. Reiter, M. J., Cowburn, D., Prives, J. M., and Karlin, A., 1972, Affinity labeling of the acetylcholine receptor in the electroplax: Electrophoretic separation in sodium dodecylsulfate, Proc. Natl. Acad. Sci. U.S.A. 69: 1168–1172.PubMedCrossRefGoogle Scholar
  71. Reynolds, J., and Karlin, A., 1978, Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica, Biochemistry 17: 2035–2038.PubMedCrossRefGoogle Scholar
  72. Sator, V., Raftery, M. A., and Martinez-Carrion, M., 1978, AT-(3-pyrene)maleimide: A fluorescent probe for acetylcholine receptor-Triton X-100 aggregates, Arch. Biochem. Biophys. 190: 57–66.PubMedCrossRefGoogle Scholar
  73. Sator, V., Gonzalez-Ros, J. M., Calvo-Fernandez, P., and Martinez-Carrion, M., 1979a, Pyrene sulfonyl azide. A marker of acetylcholine receptor subunits in contact with membrane hydrophobic environment, Biochemistry 18: 1200–1206.PubMedCrossRefGoogle Scholar
  74. Sator, V., Raftery, M. A., Thomas, J. K., and Martinez-Carrion, M., 1979b, Effect of cholinergic ligands and local anesthetics on acetylcholine receptor enriched preparations from Torpedo californica electroplax, Arch. Biochem. Biophys. 192: 250–259.PubMedCrossRefGoogle Scholar
  75. Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing deacetylphosphate, J. Biol. Chem. 249: 2652–2657.PubMedGoogle Scholar
  76. Soler, G., Mattingly, J. R., and Martinez-Carrion, M., 1984, Effects of heating on the ion gating function and structural domains of the acetylcholine receptor, Biochemistry 23: 4630–4636.PubMedCrossRefGoogle Scholar
  77. Strader, C. D., and Raftery, M. A., 1980, Topographical studies of Torpedo acetylcholine receptor subunits as a transmembrane complex, Proc. Natl. Acad. Sci. U.S.A. 77: 5807–5811.PubMedCrossRefGoogle Scholar
  78. Sugiyama, H., and Changeux, J. P., 1975, Interconversion between different states of affinity for acetylcholine of the cholinergic protein from Torpedo marmorata, Eur. J. Biochem. 55: 505–515.PubMedCrossRefGoogle Scholar
  79. Watters, D., and Maelicke, A., 1983, Organization of ligand binding sites at the acetylcholine receptor. A study with monoclonal antibodies, Biochemistry 22: 1811–1819.PubMedCrossRefGoogle Scholar
  80. Weber, M., and Changeux, J. P., 1974a, Binding of Naja nigricollis [3H]α-toxin to membrane fragments from Electrophorus and Torpedo electric organs. I. Binding of the tritiated α-neu-rotoxin in the absence of effector, Mol. Pharmacol. 10: 1–14.PubMedGoogle Scholar
  81. Weber, M., and Changeux, J. P., 1974b, Binding of Naja nigricollis [3H]α-toxin to membrane fragments from Electrophorus and Torpedo electric organs. II. Effect of cholinergic agonists and antagonists on the binding of the tritiated α-neurotoxin, Mol. Pharmacol. 10: 15–34.PubMedGoogle Scholar
  82. Weiland, G., and Taylor, P., 1979, Ligand specificity of state transitions in the cholinergic receptor: Behavior of agonists and antagonists, Mol. Pharmacol. 15: 197–212.PubMedGoogle Scholar
  83. Weltman, J. K., Szaro, R. P., Frackelton, A. R., Jr., Dowben, R. M., Bunting, J. R., and Cathou, R. E., 1973, N-(3-pyrene) maleimide: A long lifetime fluorescent sulfhydryl reagent, J. Biol. Chem. 248: 3173–3177.PubMedGoogle Scholar
  84. Wilson, P. T., Lentz, T. L., and Hawrot, E., 1985, Determination of the primary amino-acid sequence specifying the α-bungarotoxin binding site on the a subunit of the acetylcholine receptor from Torpedo californica, Proc. Natl. Acad. Sci. U.S.A. 82: 8790–8794.PubMedCrossRefGoogle Scholar
  85. Wu, C. W., Yarbrough, L. Z., and Hsiuch, Y., 1976, N-(l-pyrene) maleimide: A fluorescent crosslinking reagent, Biochemistry 15: 2863–2868.PubMedCrossRefGoogle Scholar
  86. Young, A. P., Brown, F. F., Halsey, M. J., and Sigman, D. S., 1978, Volatile anesthetic facilitation of in vitro desensitization of membrane bound acetylcholine receptor from Torpedo californica, Proc. Natl. Acad. Sci. U.S.A. 75: 4563–4567.PubMedCrossRefGoogle Scholar
  87. Young, E. F., Ralston, E., Blake, J., Ramachandran, J., Hall, Z. W., and Stroud, R. M., 1985, Topological mapping of acetylcholine receptor: Evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide, Proc. Natl. Acad. Sci. U.S.A. 82: 626–630.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Marino Martinez-Carrion
    • 1
  • Jeffrey Clarke
    • 1
  • Jose-Manuel Gonzalez-Ros
    • 1
  • Jose-Carlos Garcia-Borron
    • 1
  1. 1.Division of Molecular Biology and Biochemistry, School of Basic Life SciencesUniversity of MissouriKansas CityUSA

Personalised recommendations