Skip to main content

Recent Developments in the Molecular Biology of Human Brain Tumors

  • Chapter
Current Techniques in Neurosurgery
  • 148 Accesses

Abstract

Many of the most important scientific achievements within the field of medicine have come to light within the past 40 years. Watson and Crick discovered the structure of DNA in 1952. The genetic code of the human genome was described by 1965. The utility of restriction endonucleases- enzymes that cut large pieces of DNA into smaller, more manageable fragments-was recognized in the 1970s. Gene transfer techniques were described for the first time in 1972. The polymerase chain reaction (PCR) was described in 1985. Tumor suppressor genes, the guardians of the human genome against neoplastic change, were described in 1987. By 1995, more than 1000 patients were treated with gene therapy protocols for a variety of human diseases, including human brain tumors. The recently cloned sheep from chromosomal material contained within fully differentiated sheep mammary epithelial cellsif1ustrates the amazing strides that have occurred since the advent of these molecular biology techniques. This review presents some of these recent advances in the basic science of human brain tumors, specifically in brain tumor invasion, apoptosis, cell cycle, tumor suppressor genes, and signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giese A, Westphal M: Glioma invasion in the central nervous system.Neurosurgery1996,39:235–252.

    Article  PubMed  CAS  Google Scholar 

  2. Nicholson C, Rice ME: The migration of substances in the neuronal microenvironment.Ann N Y Acad Sci1986, 481:55–71.

    Article  PubMed  CAS  Google Scholar 

  3. DeClerck YA, Yean TD, Ratzkin BJ: Purification and char-acterization of two related but distinct metalloproteinase inhibitors secreted by bovine aortic endothelial cells. J Biol Chem 1989,264:17445–17453. 4. Margolis RK, Margolis RU: Nervous tissue proteoglycans. Experimentia (Basel) 1993,49:429–446. 5. Bignami A, Dahl D: Brain-specific hyaluronate-binding protein: a product of white matter astrocytes? J Neurocy-tol 1986,15:671–679. 6. Dow KE, Riopelle RJ, Kisilevsky R: Domains of neuronal heparan sulfate proteoglycans involved in neurite growth on laminin. Cell Tissue Res 1991,265:345–351. 7. Lafont F, Rouget M, Triller A: In vitro control of neuronal polarity by glycosaminoglycans.Development1992, 114:17–29.

    CAS  Google Scholar 

  4. Lark MW, Laterra J, Culp LA: Close and focal contact adhesions of fibroblasts to a fibronectin-containing matrix.Federation Proceedings1985,44:394–403.

    PubMed  CAS  Google Scholar 

  5. Giese A, Loo MA, Rief MD: Substrates for astrocytoma invasion.Neurosurgery1995,37:294–302.

    Article  PubMed  CAS  Google Scholar 

  6. Bellon G, Caulet T, Cam Y: Immunohistolocalisation of macromolecules of the basement membrane and extacel- cycle, and apoptotic pathways. Finally, inhibition of glioma cell invasion into normal brain by molecular methods may convert a diffuse tumor to a focal tumor that could then be treated more effectively by local therapies. We are on the threshold of making great changes in the way we treat patients with gliomas. As we move into the next millenium, the techniques described in this chapter and their application to clini-cal problems will be truly exhilarating. lular matrix of human gliomas and meningiomas.Acta Neuropathol (Berl)1985,66:245–252.

    Article  CAS  Google Scholar 

  7. Bourdon MA, Ruoslahti E: Tenascin mediates cell attachment through an RGD-dependent receptor.J Cell Biol1989,108:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  8. McComb RD, Moul JM, Bigner DD: Distribution of type IV collagen in human gliomas: Comparison with fibronectin and glioma-mesenchymal matrix glycoprotein.J Neuropathol Exp Neurol1987 , 46:623–633.

    Article  PubMed  CAS  Google Scholar 

  9. Rutka JT, Giblin JR, Apodaca G: Inhibition of growth and induction of differentiation in a malignant human glioma cell line by normal leptomeningeal extracellular matrix proteins.Cancer Res1987,, 47:3515–3522.

    PubMed  CAS  Google Scholar 

  10. Rutka JT, Myatt CA, Giblin JR: Distribution of extracellular matrix proteins in primary human brain tumours: an immunohistocheniical analysis.Can J Neurol Sci1987, 14:25–30.

    PubMed  CAS  Google Scholar 

  11. Gladson CL, Cheresh DA. Glioblastoma expression of vit-ronectin and the alpha v beta 3 integrin: Adhesion mech-anism for transformed glial cells.J Clin Invest1991, 88:1924–1932.

    Article  PubMed  CAS  Google Scholar 

  12. Jones LS: Integrins: Possible functions in the adult CNS.Trends Neurosci1996,19:68–72.

    Article  PubMed  CAS  Google Scholar 

  13. McComb RD, Bigner DD: Immunolocalization of laminin neoplasms of the central and peripheral nervous systems.J Neuropathol Exp Neurol1985,44:242–253.

    Article  PubMed  CAS  Google Scholar 

  14. Ventimiglia JB, Wikstrand CJ, Ostrowski LE: Tenascin expression in human glioma cell lines and normal tissues.J Neuroimmunol1992, 36:41–55.

    Article  PubMed  CAS  Google Scholar 

  15. Turley EA, Austen L, Moore D: Ras-transformed cells express both CD44 and RHAMM hyaluronan receptors: Only RHAMM is essential for hyaluronan-promoted loco-motion.Exp Cell Res1993, 207:277–282. 20. Sherman L, Sleeman J, Herrlich P: Hyaluronate receptors: Key players in growth, differentiation, migration and tumour progression. Curr Opin Cell Biol 1994, 6:726–733. 21. Aruffo A, Stamenkovic I, Melnick M: CD44 is the principal cell surface receptor for hyaluronate. Cell 1990, 61:1303–1313.

    Article  PubMed  CAS  Google Scholar 

  16. Bernstein IT, Goldberg VVJ, Laws ERJ: Human malignant astrocytoma xenografts migrate in rat brain: A model for central nervous system cancer research.J Neurosci Res1989, 22:134–144.

    Article  PubMed  CAS  Google Scholar 

  17. Bernstein JJ, Goldberg VVJ, Laws ERJ: C6 glioma cell inva-sion and migration in rat brain after neural homografting: Ultrastructure.Neurosurgery1990, 26:622–628.

    Article  PubMed  CAS  Google Scholar 

  18. Bernstein JJ, Goldberg VVJ, de Vellis J: Migration of glia, gliomas and neurons transplanted to the central nervous system.Int J Dev Neurosci1993, 11:523–697.

    Article  Google Scholar 

  19. Bernstein JJ: Local invasion and intraparenchymal metas-tasis of astrocytomas.Neuropathol Appl Neurobiol1996, 22:421–424.

    Article  PubMed  CAS  Google Scholar 

  20. Laws ERJ, Goldberg WJ, Bernstein JJ: Migration of human astrocytoma cells in the mammalian brain.Int Wev Neurosci1993, 11:691–697.

    Article  Google Scholar 

  21. Pederson PH, Marienhagen K, Mork S: Migratory pattern of fetal rat brain cells and human glioma cells in the adult rat brain.Cancer Res1993, 53:5158–5165.

    Google Scholar 

  22. Scherer H: Cerebral astrocytomas and their derivatives.Am J Cancer1940, 40:159–197.

    Google Scholar 

  23. Bernstein JJ, Woodard C: Glioblastoma cells do not intravasate into blood vessels.Neurosurgery1995, 36:124–132.

    Article  PubMed  CAS  Google Scholar 

  24. Ruoslahti E: Brain extracellular matrix.Glycobiology1996, 6:489–492.

    Article  PubMed  CAS  Google Scholar 

  25. Cockett MI, Birch ML, Murphy G: Metalloproteinase domain structure, cellular invasion and metastasis.Biochem Soc Trans1994, 22:55–57.

    PubMed  CAS  Google Scholar 

  26. Sato H, Talcino T, Okada Y: A matrix metalloproteinase expressed on the surface of invasive tumour.Nature1994, 370:61–65.

    Article  PubMed  CAS  Google Scholar 

  27. Vassalli JD, Pepper MS: Membrane proteases in focus.Nature1994, 370:14–15.

    Article  PubMed  CAS  Google Scholar 

  28. Uhm JH, Dooley NP, Villemure JG: Mechanism of glioma invasion: Role of matrix-metalloroteinases.Can J Neurol Sci1997, 24:3–15. An outstanding review of metalloproteinase structure and function in glioma invasion.

    PubMed  CAS  Google Scholar 

  29. Yamamoto M, Sawaya R, Mohanam S: Expression and localization of urokinase-type plasminogen activator in human astrocytomas in vivo.Cancer Res1994, 54:3656–3661.

    PubMed  CAS  Google Scholar 

  30. McCormick D: Secretion of cathepsin B in human gliomas in vitro.Neuropathol Appl Neurobiol1993, 19:146–151.

    Article  PubMed  CAS  Google Scholar 

  31. Romanic AM, Madri JA: Extracellular matrix-degrading proteinases in the nervous system.Brain Pathol1994, 4:145–156.

    Article  PubMed  CAS  Google Scholar 

  32. Overall CM, Wrana JL, Sodek J: Transcriptional and post-transcriptional regulation of 72–1cDa gelatinase/typeIV collagenase by transforming growth factor-beta 1 in human fibroblast: Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expres-sion.J Biol Chem1991, 266:14064–14071.

    Google Scholar 

  33. Boone TC, Johnson MI, DeClerck YA: cDNA cloning and expression of a metalloproteinase inhibitor related to tissue of metalloproteinases.Proc Natl Acad Sci USA1990, 87:2800–2804.

    Article  PubMed  CAS  Google Scholar 

  34. De Clerck YA, Shimada H, Gonzalez-Gomez I: Tumor invasion in the central nervous system.J Neurooncol1994, 18:111–121.

    Article  PubMed  Google Scholar 

  35. Murphy G, Cawston T, Reynold J: An inhibitor of collage-nase from human amniotic fluid: Purification, characterization and action on metalloproteinases.Biochemistry1981, 195:167–170.

    CAS  Google Scholar 

  36. Stetler-Stevenson WG, Krutzsch HC, Liotta LA: Tissue inhibitor of metalloproteinase (TIMP2): A new member of metalloproteinase inhibitor family.J Biol Chem1989, 264:17374–17378.

    PubMed  CAS  Google Scholar 

  37. Bjerkvig R, Laerum OD, Mella 0: Glioma cell interactions with fetal rat brain aggregates in vitro and with brain tissue in vivo.Cancer Res1986, 46:4071–4079.

    Google Scholar 

  38. Amar AP, DeArmond SJ, Spencer D. Development of an in vitro extracellular matrix assay for studies of brain tumour cell invasion.J Neurooncol1994, 20:1–15.

    Article  PubMed  CAS  Google Scholar 

  39. DeArmond SJ, Stowring L, Amar AP: Development of a non-secreting, non-perturbing method to study human brain tumour cell invasion in murine brain.J Neurooncol1994, 20:27–34.

    Article  PubMed  CAS  Google Scholar 

  40. Repesh LA: A new in vitro assay for quantitating tumor cell invasion.Invasion Metastasis1989, 9:192–208.

    PubMed  CAS  Google Scholar 

  41. Kerr JFR, Winterford CM, Harmon BV: Apoptosis: Its significance in cancer and cancer therapy.Cancer1994, 73:2013–2026.

    Article  PubMed  CAS  Google Scholar 

  42. Fisher DE. Apoptosis in cancer therapy: Crossing the threshold.Cell1994, 78:539–542.

    Article  PubMed  CAS  Google Scholar 

  43. Nagata S: Apoptosis by death factor.Cell1997, 88:355–365.

    Article  PubMed  CAS  Google Scholar 

  44. Tachibana 0, Lampe J, Kleihues P, Ohgaki H: Preferential expression of Fas/AP01 (CD95) and apoptic cell death in perinecrotic cells of glioblastoma.Acta Neuropathol (Berl)1996, 92:431–434.

    Article  CAS  Google Scholar 

  45. Weller M, Frei K, Groscurth P. Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells: Induction and modulation of sensitivity by cytokines.J Clin Invest1994, 94:954–964.

    Article  PubMed  CAS  Google Scholar 

  46. Weller M, Malipiero U, Rensing-Ehl A, Barr PJ: Fas/APO-1 gene transfer for human malignant glioma.Cancer Res1995, 55:2936–2944.

    PubMed  CAS  Google Scholar 

  47. Weller M, Malipiero U, Aguzzi A, Reed JC, Fontana A: Pro-tooncogene bc1–2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation.J Clin Invest1995, 95:2633–2643.

    Article  Google Scholar 

  48. Levine AJ: p53, the cellular gatekeeper for growth and division.Cell1997, 88:323–331.

    Article  PubMed  CAS  Google Scholar 

  49. Kondo S, Barna BP, Kondo Y, Tanaka Y: WAF1/CIP1 increases the susceptibility of p53 non-functional malignant glioma cells to cisplatin-induced apoptosis.Onco-gene1996, 13:1279–1285.

    CAS  Google Scholar 

  50. Fraser A, Evan G: A license to kill.Cell1996, 85:781–784.

    Article  PubMed  CAS  Google Scholar 

  51. Yu IS, Sena-Esteves M, Paulus W, Breakefield XO: Retroviral delivery and tetracycline-dependent expression of IL-lbeta-converting enzyme (ICE) in a rat glioma model provides controlled induction of apoptic death in tumor cells.Cancer Res1996, 56:5423–5427.

    PubMed  CAS  Google Scholar 

  52. Alderson LM, Castleberg RL, Harsh GR, Louis DN Human gliomas with wild-type p53 express bc1-2.Cancer Res1995, 55:999–1001.

    PubMed  CAS  Google Scholar 

  53. Hunter T: Oncoprotein networks.Cell1997, 88:333–346.

    Article  PubMed  CAS  Google Scholar 

  54. Gomez-Manzano C, Fueyo J, Kyritsis AP, Steck PA: Aden-ovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis.Cancer Res1996, 56:694–699.

    PubMed  CAS  Google Scholar 

  55. Pardee AB: G1 events and regulation of cell proliferation.Science1989, 246:603–608.

    Article  PubMed  CAS  Google Scholar 

  56. Morgan DO: Principles of CDK regulation.Nature1995, 374:131–134.

    Article  PubMed  CAS  Google Scholar 

  57. Nigg EA: Targets of cyclin-dependent protein kinases.Curr Opin Cell Biol1993, 5:187–193.

    Article  PubMed  CAS  Google Scholar 

  58. Nigg EA: Cyclin-dependent protein kinases: Key regulators of the cell cycle.Bioessays1995, 17:471–480.

    Article  PubMed  CAS  Google Scholar 

  59. Dinks PB, Rutka JT: Current concepts in neuro-oncology: the cell cycle [review].Neurosurgery1997, 40:1000–1015.

    Article  Google Scholar 

  60. Matsushime H, Quelle DE, Shurtleff SA,et al.: D-type cyclin dependent ldnase activity in mammalian cells.Mol Cell Biol1994, 14:2066–2076.

    PubMed  CAS  Google Scholar 

  61. Meyerson M, Harlow E. Identification of G1 kinase activ-ity for cdk6, a novel cyclin D partner.Mol Cell Biol1994;14:2077–2086.

    PubMed  CAS  Google Scholar 

  62. Sherr CJ: G1 phase progression: Cycling on cue.Cell1994, 79:551–555.

    Article  PubMed  CAS  Google Scholar 

  63. Weinberg RA: The retinoblastoma protein and cell cycle control.Cell1995, 81:323–330.

    Article  PubMed  CAS  Google Scholar 

  64. Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent ldnases.Genes Dev1995, 9:1149–1163.

    Article  PubMed  CAS  Google Scholar 

  65. Xiong Y, Zhang H, Beach D: D type cyclins associate with multiple protein kinases and DNA replication and repair factor PCNA.Cell1992, 71:505–514.

    Article  PubMed  CAS  Google Scholar 

  66. Xiong Y, Hannon GJ, Zhang H,et al.: p21 is a universal inhibitor of cyclin ldnases.Nature (London)1993, 366:701–704.

    Article  CAS  Google Scholar 

  67. Xiong Y, Connolly T, Futcher B, Beach D: Human D-type cyclin.Cell1991, 65:691–699.

    Article  PubMed  CAS  Google Scholar 

  68. Arap W, Nishikawa R, Furnari F, Cavanee WK, Huang HJ: Replacement of the p16/CDKN2 gene suppresses human glioma cell growth.Cancer Res1995, 55:1351–1355.

    PubMed  CAS  Google Scholar 

  69. He J, Allen JR, Collins VP: CDK4 amplification is an alternative mechanism to p16 homozygous deletion in glioma cell lines.Cancer Res1994, 54:5804–5807.

    PubMed  CAS  Google Scholar 

  70. Ichimura K, Schmidt EE, Goike HM, Collins VP: Human glioblastomas with no alterations of the CDKN2A (p 6INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene.Oncogene1996, 13:1065–1072.

    PubMed  CAS  Google Scholar 

  71. Jenn JJ, Harper JVV, Bigner D,et al.: Deletion of p16 and p15 in brain tumors.Cancer Res1994, 54:6353–6358.

    Google Scholar 

  72. Kamb A, Gruis NA, Weaver-Feldhaus J,et al.: A cell cycle regulator potentially involved in the genesis of many tumor types.Science1994, 264:436–440.

    Article  PubMed  CAS  Google Scholar 

  73. Nishikawa R, Furnari FB, Lin H,et al.: Loss of p16 expression is frequent in high grade glioma.Cancer Res1995, 55:1941–1945.

    PubMed  CAS  Google Scholar 

  74. Nobori T, Miura K, Wu DJ,et al.: Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers.Nature1994, 368:753–756.

    Article  PubMed  CAS  Google Scholar 

  75. Giani C, Finocchiaro G: Mutation rate of CDKN2 gene in malignant glioma.Cancer Res1994,54:6338–6339.

    PubMed  CAS  Google Scholar 

  76. Reifenberger G, Reifenberger J, Ichimura K,et al.: Amplification of multiple genes from chromosomal region 12q13 in human malignant gliomas: Preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, MDM2.Cancer Res1994, 54:4299–4303.

    PubMed  CAS  Google Scholar 

  77. Saxena A, Robertson JT, All IU: Abnormalities of p16, p15 and CDK4 genes in recurrent malignant astrocytomas.Oncogene1996, 13:661–664.

    PubMed  CAS  Google Scholar 

  78. Scmidt EE, Ichimura K, Reifenberger G, Collins VP: CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas.Cancer Res1994, 54:6321–6324.

    Google Scholar 

  79. Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN: CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated.Cancer Res1996, 56:150–153.

    PubMed  CAS  Google Scholar 

  80. Walker DG, Duan W, Popovic EA,et al.: Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytoma.Cancer Res1995, 55:20–23.

    PubMed  CAS  Google Scholar 

  81. Petronio J, He J, Fults D,et al.: Common alternative gene alterations in adult malignant astrocytomas, but not in childhood primitive neueroectodermal tumors: p16INK4 homozygous deletions and CDK4 gene amplifications.J Neurosurg1996, 84:1020–1023.

    Article  PubMed  CAS  Google Scholar 

  82. Dreyling MH, Bohlander SK, Adeyanju MO, Olopade OI: Detection of CDKN2 deletions in tumor cell lines and primary glioma by interphase fluorescence in situ hybridization.Cancer Res1995, 55:984–988.

    PubMed  CAS  Google Scholar 

  83. Moulton T, Samara G, Chung WY, Yuan L: MTS1 /p16/CDKN2 lesions in primary globlastoma multi-forme.Am J Pathol1995, 146:613–619.

    PubMed  CAS  Google Scholar 

  84. Li YT, Hoang-Xuan K, Delattre JY, Poisson M Frequent loss of heterozygosity on chromosome 9, and low incidence of mutations of cyclin dependent kinase inhibitors p15 (MTS2) and p16 (MTS1) genes in gliomas.Oncogene1995, 11:597–600.

    PubMed  CAS  Google Scholar 

  85. Sonoda Y, Yoshimoto T, Sekiya T: Homozygous deletion of the MTS1 /p16 and MTS2 /p15 genes and amplification of the CDK4 gene in glioma.Oncogene1995, 11:2145-2149.

    PubMed  CAS  Google Scholar 

  86. Kyristsis AP, Zhang B, Zhang W, Xiao M: Mutations in the p16 gene in gliomas.Oncogene1996, 12:63–67.

    Google Scholar 

  87. Srivenugopal KS, Ali-Osman F: Deletions and rearrangements inactivate the p16INK4 gene in human glioma cells.Oncogene1996, 12:2029–2034.

    PubMed  CAS  Google Scholar 

  88. Costello IF, Berger MS, Huang HS, Cavenee WK: Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation.Cancer Res1996, 56:2405–2410.

    PubMed  CAS  Google Scholar 

  89. Fueyo J, Gomez-Manzano C, Yung WK, Clayman GL: Ade-novirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of gliorna cells.Oncogene1996, 12:103–110.

    PubMed  CAS  Google Scholar 

  90. Dirks PB, Murakami M, Hubbard SL, Rutka JT: Cyclins and cyclin-dependent kinase expression in human astro-cytoma cell lines.J Neuropathol Exp Neurol1997, 56:291–300.

    Article  PubMed  CAS  Google Scholar 

  91. Jung JM, Bruner JM, Ruan S, Langford LA: Increased levels of p21WAF/Cipl in human brain tumors.Oncogene1995, 11:2021–2028.

    PubMed  CAS  Google Scholar 

  92. Chen J, Willingham T, Shuford M,et al.: Effects of ectopic overexpression of p21 (VVAF1/CIP1) on aneuploidy and the malignant phenotype of human brain tumor cells.Oncogene1996, 13:1395–1403.

    PubMed  CAS  Google Scholar 

  93. Hsiao M, Tse V, Carmel J,et al.: Functional expression of human p21(VVAF1/CIP1) gene in rat glioma cells suppresses tumor growth in vivo and induces radiosensitivity.Biochem Biophys Res Commun1997,233:329–335.

    Article  PubMed  CAS  Google Scholar 

  94. Chen J, Willingham T, Shuford M, Nisen PD: Tumor suppression and inhibition of aneuploid cell accumulation in human brain tumor cells by ectopic overexpression of the cyclin-dependent kinase inhibitor p27KIP1.J Clin Invest1996, 97:1983–1988.

    Article  PubMed  CAS  Google Scholar 

  95. Dirks PB, Patel K, Hubbard SL,et al.: Cyclin dependent kinases and retinoic acid act synergistically to inhibit U343 astrocytoma cells.Oncogene1997, 15:2037–2048.

    Article  PubMed  CAS  Google Scholar 

  96. Pawson A: Protein molecules and signalling networks.Nature1995, 373:573–580.

    Article  PubMed  CAS  Google Scholar 

  97. Pawson T, Gish GD: SH2 and SH3 domains: From structure to function.Cell1992, 71:359–362.

    Article  PubMed  CAS  Google Scholar 

  98. Lowenstein EJ, Daly R, Batzer AG: The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to Ras signalling.Cell1992, 74:431–442.

    Article  Google Scholar 

  99. Cohen GB, Ren R, Baltimore D: Molecular binding domains of signal transduction proteins.Cell1995, 80:237–248.

    Article  PubMed  CAS  Google Scholar 

  100. Crew CM, Erickson RL: Extracellular signals and reversible protein phosphorylation: What to Mek of it all.Cell1993, 74:215–217.

    Article  Google Scholar 

  101. Hill CS, Treisman R: Transcriptional regulation by extra-cellular signals: mechanisms and specificity.Cell1995, 80:199–211.

    Article  PubMed  CAS  Google Scholar 

  102. Guha A, Lau N, Huvar I: ras GTP levels are elevated in human NF1 peripheral nerve tumors.Oncogene1996, 12:507–513.

    PubMed  CAS  Google Scholar 

  103. Hollstein M, Sidransky D, Vogelstein B: p53 mutations in human cancer.Science1991, 253:49–53.

    Article  PubMed  CAS  Google Scholar 

  104. Malkin D, Li FP, Strong LC: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.Science1990, 250:1233–1238.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Current Medicine, Inc.

About this chapter

Cite this chapter

Rutka, J.T., Tsugu, A., Jung, S., Dirks, P., Kurimoto, M. (1998). Recent Developments in the Molecular Biology of Human Brain Tumors. In: Salcman, M. (eds) Current Techniques in Neurosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9350-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9350-4_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9352-8

  • Online ISBN: 978-1-4613-9350-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics