Skip to main content

Abstract

A highly efficient numerical method is developed for three-dimensional, periodic, vortical flows around a cascade of loaded airfoils. The method uses the approximation of the rapid distortion theory and thus fully accounts for the effects of distortion of the vortical disturbances as they propagate through the spatially varying mean flow. The numerical scheme is based on the splitting of the unsteady velocity into a vortical part which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and a potential part satisfying a nonconstant-coefficient, inhomogeneous, convective wave equation. A new downstream out-flow boundary condition is derived to complete the unsteady boundary value problem. By writing the downstream condition in terms of the unsteady pressure, the difficulties associated with the singular behavior of the unsteady vortical velocity are avoided. This condition is relatively simple and suitable for numerical computations. By using a body-fitted coordinate system, the unsteady potential is computed in the frequency domain. Results are presented to demonstrate the effects of mean blade loading on the aerodynamic response of a cascade to vortical gust excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. J. Akai and H. M. Atassi. Aerodynamic and aeroelastic characteristics of oscillating loaded cascades at low mach number, part 2: Stability and flutter boundaries. Trans. ASME A: Journal of Engineering for Power, 102: 524–356, 1980.

    Article  Google Scholar 

  2. H. M. Atassi and J. Grzedzinski. Unsteady disturbances of streaming motions around bodies. J. Fluid Mech., 209: 385–403, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. H. M. Atassi. The sears problem for a lifting airfoil revisited-new results. J. Fluid Mech., 141: 109–122, 1984.

    Article  ADS  MATH  Google Scholar 

  4. H.M. Atassi. Unsteady vortical disturbances about bodies. In Proceedings of the Tenth U. S. National Congress of Applied Mechanics. J.P. Lamb, ed., ASME, 1986.

    Google Scholar 

  5. G. K. Batchelor and I. Proudman. The effect of rapid distortion of a fluid in turbulent motion. Quart. J. Mech. Appl. Math., 1: 83–103, 1954.

    Article  MathSciNet  Google Scholar 

  6. J. Fang. Compressible Flows with Vortical Disturbances Around A Cascade of Airfoils. PhD thesis, University of Notre Dame, April 1991.

    Google Scholar 

  7. M. E. Goldstein and H. M. Atassi. A complete second-order theory for the unsteady flow about an airfoils due to a periodic gust. J. Fluid Mech., 74: 741–765, 1976.

    Article  ADS  MATH  Google Scholar 

  8. Marvin E. Goldstein. Aeroacoustics. McGraw-Hill, 1976.

    Google Scholar 

  9. M. E. Goldstein. Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech., 89: 433–468, 1978.

    Article  ADS  MATH  Google Scholar 

  10. K.C. Hall and J. M. Verdon. Gust response analysis for cascade operating in nonuniform mean flows. AIAA Journal, 29 (9): 1463–1471, September 1991.

    Article  ADS  Google Scholar 

  11. M. Kurosaka. On the unsteady supersonic cascade with a subsonic leading edge–an exact first order theory: Part 1 and 2. Trans. ASME A: Journal of Engineering for Power, 96: 13–31, 1974.

    Article  Google Scholar 

  12. E. R. McFarland. A rapid blade-to-blade solution for use in turbomachinery design. Journal of Engineering for Gas Turbines and Power, 106: 376–382, 1984.

    Article  Google Scholar 

  13. T. Nagashima and D. S. Whitehead. Linearized supersonic unsteady flows in cascade. Technical Report 3811, A.R.C., 1978.

    Google Scholar 

  14. L. Prandtl. Attaining a steady air stream in wind tunnels. Technical Report Tech. Memo., No. 726, N.A.S.A., 1933.

    Google Scholar 

  15. J. S. Scott and H. M. Atassi. Numerical solutions of the linearized euler equations for unsteady vortical flows around lifting airfoils. In 28th Aerospace Sciences Meeting, Reno. AIAA Paper, 1990.

    Google Scholar 

  16. J. S. Scott. Compressible Flows with Periodic Vortical Disturbances around Lift Airfoils. PhD thesis, University of Notre Dame, April 1990.

    Google Scholar 

  17. J. M. Verdon and J. R. Caspar. Subsonic flow past an oscillating cascade with finite mean flow deflection. AIAA J., 18: 524–356, 1980.

    Article  Google Scholar 

  18. J. M. Verdon and J. R. Caspar. A linearized unsteady aerodynamic analysis for transonic cascade. J. Fluid Mech., 149: 403–429, 1984.

    Article  ADS  MATH  Google Scholar 

  19. C.S. Ventres. A computer program to calculate cascade 2-d kernel. In NASA Technic Memorandum. NASA, 1980.

    Google Scholar 

  20. J. M. Verdon. Further development in the aerodynamic analysis of unsteady supersonic cascade, part 1: The unsteady pressure field, and part 2: Aerodynamic response predictions. Trans. ASME A: Journal of Engineering for Power, 99: 509–525, 1977.

    Article  Google Scholar 

  21. J. M. Verdon. Linearized unsteady aerodynamic theory. In AGARD Manual on Aeroelasticity in Axial-Flow Turbomachinery, volume 1. M. F. Platzer and F. O. Carta, Editors, 1987.

    Google Scholar 

  22. J. M. Verdon. The unsteady flow in the far field of an isolated blade row. Journal of Fluids and Structures, 3: 123–149, 1989.

    Article  ADS  MATH  Google Scholar 

  23. D. S. Whitehead and R. J. Grant. Force and moment coefficients for high deflection cascade. In 2nt Intl. Symp. on Aeroelasticity in Turbomachines. P. Suter, Editors, 1980.

    Google Scholar 

  24. D.S. Whitehead. Force and moment coefficient for vibrating aerofoils in cascade. In A.R.C. 22133. Cambridge Univ. Engineering Department, 1960.

    Google Scholar 

  25. D.S. Whitehead. Vibration and sound generation in a cascade of flat plates in subsonic flow. In A.R.C. 32017. Cambridge Univ. Engineering Department, 1970.

    Google Scholar 

  26. D. S. Whitehead. Classical two-dimensional method. In AGARD Manual on Aeroelasticity in Axial-Flow Turbomachinery, volume 1. M. F. Platzer and F. O. Carta, Editors, 1987.

    Google Scholar 

  27. D.S. Whitehead and S.G. Newton. A finite element method for the solution of two-dimensional transonic flows in cascades. International Journal for Numerical Method in Fluids, 5: 115–132, 1985.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Fang, J., Atassi, H.M. (1993). Compressible Flows with Vortical Disturbances Around a Cascade of Loaded Airfoils. In: Atassi, H.M. (eds) Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9341-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9341-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9343-6

  • Online ISBN: 978-1-4613-9341-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics