An Innovative Algorithm for Periodic Flow Calculations Using a Parallel Architecture — Some Applications to Unsteady Aerodynamics

  • G. Carte
  • P. Fraunié
  • P. Dussouillez
Conference paper


An iterative scheme for the computation of periodic unsteady flows is presented, using a global space and time discretization, instead of a time marching procedure. A decomposition of domain is used to implement the algorithm on distributed architecture computers.

The preliminary results presented here concern two types of periodic flows: the first one is a pulsed boundary layer developing on a flat plate and the second one is a periodic wake behind a rectangular afterbody, when the flow generated Strouhal frequency is a new unknown.


Peri Advection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Peyret and T.D. Taylor. Computational Methods for Fluid Flow. 1983.MATHGoogle Scholar
  2. [2]
    G.E. Karniadakis and G.S. Triantafyllou. Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. submitted to J. Fluid Mech., 1990.Google Scholar
  3. [3]
    W.C. Reynolds. The potential and limitations of direct and large eddy simulations. In Whiter Turbulence workshop, Cornell Univ., March 22–24, 1989.Google Scholar
  4. [4]
    B.E. Launder and D.P. Tselepidakis. Progress and paradoxes in modelling near-wall turbulence. In paper 29–1, 8th Symp. Turbulent Shear Flows, Munich, 1991.Google Scholar
  5. [5]
    M.W. Rubesin D.D. Vandromme H. Ha Minh, J.R. Viegas and P. Spalart. Physical analysis and second order modelling of an unsteady turbulent flow: the oscillating boundary layer on a flat plate. In Proc. Turbulent Shear Flow 7, Stanford, U.S.A., 1989.Google Scholar
  6. [6]
    A.K.M.F. Hussain and W.C. Reynolds. The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech., vol 41, 1970.Google Scholar
  7. [7]
    P. Fraunié. Analyse des effets inst.ationnaires sur un profil d’aile animé d’un mouvement de trajectoire circulaire. PhD thesis, University Aix-Marseille I I, 1987.Google Scholar
  8. [8]
    P. Fraunié. Calcul d’écoulements en conditions aux limites périodiques sur architecture parallèle. application en aérodynamique instationnaire. In Response of shear flows to imposed unsteadiness. EUROMECH 272, Aussois, 14–18 jan, 1991.Google Scholar
  9. [9]
    H.B. Keller and T. Cebeci. An accurate numerical method for boundary layer flows. AIAA J. vol 10 n?9, 1971.Google Scholar
  10. [10]
    J.J. Casalot. Calcul d’écoulements périodiques sur architecture parallèle - application à la couche limite sur plaqe plane. Master’s thesis, ESIM/IMT, 1989.Google Scholar
  11. [11]
    E. Richalley. Parallélisation de la résolution des équations de navierstokes sur un réseau de transputers, 1990.Google Scholar
  12. [12]
    P. Chassaing M. Braza and H. Ha Minh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech., vol 165, 1986.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • G. Carte
    • 1
  • P. Fraunié
    • 1
  • P. Dussouillez
    • 1
  1. 1.Institut de Mécanique Statistique de la TurbulenceMarseilleFrance

Personalised recommendations