Advertisement

An Innovative Algorithm for Periodic Flow Calculations Using a Parallel Architecture — Some Applications to Unsteady Aerodynamics

  • G. Carte
  • P. Fraunié
  • P. Dussouillez
Conference paper

Abstract

An iterative scheme for the computation of periodic unsteady flows is presented, using a global space and time discretization, instead of a time marching procedure. A decomposition of domain is used to implement the algorithm on distributed architecture computers.

The preliminary results presented here concern two types of periodic flows: the first one is a pulsed boundary layer developing on a flat plate and the second one is a periodic wake behind a rectangular afterbody, when the flow generated Strouhal frequency is a new unknown.

Keywords

Large Eddy Simulation Unsteady Flow Convergence Test Turbulent Shear Flow Unsteady Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Peyret and T.D. Taylor. Computational Methods for Fluid Flow. 1983.MATHGoogle Scholar
  2. [2]
    G.E. Karniadakis and G.S. Triantafyllou. Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. submitted to J. Fluid Mech., 1990.Google Scholar
  3. [3]
    W.C. Reynolds. The potential and limitations of direct and large eddy simulations. In Whiter Turbulence workshop, Cornell Univ., March 22–24, 1989.Google Scholar
  4. [4]
    B.E. Launder and D.P. Tselepidakis. Progress and paradoxes in modelling near-wall turbulence. In paper 29–1, 8th Symp. Turbulent Shear Flows, Munich, 1991.Google Scholar
  5. [5]
    M.W. Rubesin D.D. Vandromme H. Ha Minh, J.R. Viegas and P. Spalart. Physical analysis and second order modelling of an unsteady turbulent flow: the oscillating boundary layer on a flat plate. In Proc. Turbulent Shear Flow 7, Stanford, U.S.A., 1989.Google Scholar
  6. [6]
    A.K.M.F. Hussain and W.C. Reynolds. The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech., vol 41, 1970.Google Scholar
  7. [7]
    P. Fraunié. Analyse des effets inst.ationnaires sur un profil d’aile animé d’un mouvement de trajectoire circulaire. PhD thesis, University Aix-Marseille I I, 1987.Google Scholar
  8. [8]
    P. Fraunié. Calcul d’écoulements en conditions aux limites périodiques sur architecture parallèle. application en aérodynamique instationnaire. In Response of shear flows to imposed unsteadiness. EUROMECH 272, Aussois, 14–18 jan, 1991.Google Scholar
  9. [9]
    H.B. Keller and T. Cebeci. An accurate numerical method for boundary layer flows. AIAA J. vol 10 n?9, 1971.Google Scholar
  10. [10]
    J.J. Casalot. Calcul d’écoulements périodiques sur architecture parallèle - application à la couche limite sur plaqe plane. Master’s thesis, ESIM/IMT, 1989.Google Scholar
  11. [11]
    E. Richalley. Parallélisation de la résolution des équations de navierstokes sur un réseau de transputers, 1990.Google Scholar
  12. [12]
    P. Chassaing M. Braza and H. Ha Minh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech., vol 165, 1986.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • G. Carte
    • 1
  • P. Fraunié
    • 1
  • P. Dussouillez
    • 1
  1. 1.Institut de Mécanique Statistique de la TurbulenceMarseilleFrance

Personalised recommendations