Advertisement

Microscopic Description of Nuclear Collisions

  • G. Blüge
  • K. Langanke
  • H.-G. Reusch

Abstract

In recent years, microscopic cluster models have been applied successfully in studying light nuclear systems. These approaches are performed through many-body wave functions having well-defined quantum numbers and fulfilling the Pauli principle exactly. While the model is in principle an exact solution to the many-body problem, practical applications are restricted to the consideration of a model space spanned by a few cluster wave functions, accounting for the fact that in light nuclei, nucleons have the tendency to group in clusters. Keeping the internal degrees of freedom of these clusters fixed, the many-body problem is reduced to determining the relative motion between the various clusters. Detailed reviews on microscopic nuclear cluster models can be found in [4.1–3]. More recently, these models have also been successfully applied to light hypernuclei [4.4,5] as well as to light hadronic systems within non-relativistic quark models [4.6–8] (see also Chapt. 10).

Keywords

Wave Function Nuclear Collision Pauli Principle Microscopic Description Resonate Group Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [4.1]
    K. Wildermuth and Y.C. Tang, A Unified Theory of the Nucleus ( Vieweg, Braunschweig, 1977 )Google Scholar
  2. [4.2]
    Y.C. Tang, M. LeMere, and D.R. Thompson, Phys. Rep. 47, 167 (1978)ADSCrossRefGoogle Scholar
  3. [4.3]
    K. Langanke and H. Friedrich, Advances in Nuclear Physics, eds. J.W. Negele and Erich Vogt ( Plenum, New York, 1987 )Google Scholar
  4. [4.4]
    Progr. Theor. Phys. Suppl. 81 (1985)Google Scholar
  5. [4.5]
    T. Warmann and K. Langanke, Z. Phys. A334, 221 (1989)ADSGoogle Scholar
  6. [4.6]
    N. Isgur and G. Karl, Phys. Rev. D19, 2653 (1979)ADSGoogle Scholar
  7. [4.7]
    A. Faessler, F. Fernandez, G. Lübeck, and K. Shimizu, Phys. Lett. 112B, 201 (1982)Google Scholar
  8. [4.8]
    M. Oka and K. Yazaki, Progr. Theor. Phys. 66, 551 and 572 (1981)Google Scholar
  9. [4.9]
    F.S. Chwieroth, R.E. Brown, Y.C. Tang, and D.R. Thompson, Phys. Rev. C8, 938 (1973)ADSGoogle Scholar
  10. [4.10]
    P. Heiss and H.H. Hackenbroich, Phys. Lett. 30B, 373 (1969)CrossRefGoogle Scholar
  11. [4.11]
    F. Tanabe, A. Tohsaki, and R. Tamagaki, Progr. Theor. Phys. 53, 677 (1975)ADSCrossRefGoogle Scholar
  12. [4.12]
    12]I. Reichstein and Y.C. Tang, Nucl. Phys. A158, 529 (1970)CrossRefGoogle Scholar
  13. [4.13]
    Y. Fujiwara and Y.C. Tang, Phys. Rev. C31, 342 (1985)ADSCrossRefGoogle Scholar
  14. [4.
    ] G. Blüge, doctoral thesis (Münster, 1990, unpublished)Google Scholar
  15. [4.15]
    Y. Fujiwara, Q.K.K. Liu, and Y.C. Tang, Phys. Rev. C38, 1531 (1988)ADSGoogle Scholar
  16. [4.16]
    H.J. Assenbaum, doctoral thesis (Münster, 1987, unpublished)Google Scholar
  17. [4.17]
    E. Kolbe, K. Langanke, and H.J. Assenbaum, Phys. Lett. B214, 169 (1988)Google Scholar
  18. [4.18]
    H.H. Robertson, Cambridge Phil. Soc. 52, 538 (1956)MATHGoogle Scholar
  19. [4.19]
    H. Kanada, T. Kaneko, S. Saito, and Y.C. Tang, Nucl. Phys. A444, 209 (1985)CrossRefGoogle Scholar
  20. [4.20]
    P. Schwandt, T.B. Clegg, and W. Haeberli, Nucl. Phys. A163, 432 (1971)CrossRefGoogle Scholar
  21. [4.21]
    A. Houdayer, N.E. Davison, S.A. Elbakr, A.M. Sourkes, W.T.H. van Oers, and A.D. Bacher, Phys. Rev. C18, 1985 (1978)Google Scholar
  22. [4.22]
    S. Saito, Progr. Theor. Phys. 41, 705 (1969)ADSCrossRefGoogle Scholar
  23. S. Saito, S. Okai, R. Tamagaki and M. Yasuno, Progr. Theor. Phys. 50, 1561 (1973)ADSCrossRefGoogle Scholar
  24. [4.23]
    H. Friedrich and K. Langanke, Phys. Rev. C28, 1385 (1983)ADSGoogle Scholar
  25. [4.24]
    K.Langanke and D. Frekers, Nucl. Phys. A302, 134 (1978)CrossRefGoogle Scholar
  26. [4.25]
    F.S. Chwieroth, Y.C. Tang, and D.R. Thompson, Phys. Rev. C9, 56 (1974)ADSGoogle Scholar
  27. [4.26]
    G. Blüge and K. Langanke, Phys. Rev. C41, 1191 (1990)ADSGoogle Scholar
  28. [4.27]
    P.N. Shen, Y.C. Tang, Y. Fujiwara, and H. Kanada, Phys. Rev. C31, 2001 (1985)Google Scholar
  29. [4.28]
    G. Blüge and K. Langanke, Few-Body Systems 11, 137 (1991)ADSCrossRefGoogle Scholar
  30. [4.29]
    R.D. Furber, doctoral thesis, (Minneapolis, 1975, unpublished)Google Scholar
  31. [4.30]
    H. Federsel, E.J. Kanellopoulos, W. Sünkel, and K. Wildermuth, Phys. Lett. B33, 140 (1970)CrossRefGoogle Scholar
  32. [4.31]
    H.M. Hoffmann, T. Mertelmeier, and W. Zahn, Nucl. Phys. A410, 208 (1983)CrossRefGoogle Scholar
  33. [4.32]
    D.R. Thompson and Y.C. Tang, Phys. Rev. C8, 1649 (1973)ADSGoogle Scholar
  34. [4.33]
    H. Kanada, T. Kaneko, and Y.C. Tang, Phys. Rev. C38, 2013 (1988)ADSGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • G. Blüge
  • K. Langanke
  • H.-G. Reusch

There are no affiliations available

Personalised recommendations