Skip to main content

Binary Perfect Weighted Coverings (PWC)

I. The Linear Case

  • Conference paper

Abstract

This paper deals with an extension of perfect codes to fractional (or weighted) coverings. We shall derive a Lloyd theorem—a strong necessary condition of existence— and start a classification of these perfect coverings according to their diameter. We illustrate by pointing to list decoding.

Keywords

  • Linear Code
  • Diophantine Equation
  • Cyclic Code
  • Packed Code
  • Perfect Code

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4613-9323-8_4
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-1-4613-9323-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. F. Assmus, Jr., H. F. Mattson, Jr., R. Turyn, “Cyclic codes,” Final Report, Contract no. AF 19(604)-8516, AFCRL, April 28, 1966. Sylvania Applied Research Laboratory, Waltham, Mass. (Document no. AFCRL-66–348.)

    Google Scholar 

  2. L. A. Bassalygo, G. V. Zaitsev, V. A. Zinoviev, “On Uniformly Packed Codes,” Problems of Inform. Transmission, vol. 10, no. 1, 1974, pp. 9–14.

    MATH  Google Scholar 

  3. L. A. Bassalygo, G. V. Zaitsev, V. A. Zinoviev, “Note on Uniformly Packed Codes,” Problems of Inform. Transmission, vol. 13, no. 3, 1977, pp. 22–25.

    MATH  Google Scholar 

  4. V. M. Blinovskii, “Bounds for codes in the case of list decoding of finite volume,” Problems Inform. Transmission 22, no. 1, (1986), pp. 7–19 (English).

    MathSciNet  Google Scholar 

  5. B. Bouchon, G. Cohen, “Partitions and Fuzziness,” J. of Math. Analysts and Applications, vol. 116, no. 1, 1986, pp. 166–183.

    MATH  CrossRef  MathSciNet  Google Scholar 

  6. R. F. Clayton, “Multiple Packings and Coverings in Algebraic Coding Theory,” Thesis, Univ. of California, Los Angeles, 1987.

    Google Scholar 

  7. G. D. Cohen, P. Frankl, “On tilings of the binary vector space,” Discrete Math. 31, 1980, pp. 271–277.

    MATH  CrossRef  MathSciNet  Google Scholar 

  8. G. D. Cohen, M. Karpovsky, H. F. Mattson, Jr., and J. R. Schatz, “Covering radius—Survey and recent results,” IEEE Trans. Inform. Theory IT-31, pp. 328–343, 1985.

    CrossRef  MathSciNet  Google Scholar 

  9. A. A. Davydov, L. M. Tombak, “Number of minimal-weight words in block codes,” Problems of Inform. Transmission, vol. 24, no. 1, pp. 11–24, 1988.

    MATH  MathSciNet  Google Scholar 

  10. P. Delsarte, “Four Fundamental Parameters of a Code and Their Combinatorial Significance,” Information and Control, vol. 23, no. 5, pp. 407–438, 1973.

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. P. Elias, “Error-correcting codes for list decoding,” IEEE Trans. Inform. Theory 37 (1991), pp. 5–12.

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. J. M. Goethals, H. C. A. van Tilborg, “Uniformly packed codes,” Philips Res. Repts 30, pp. 9–36, 1975.

    MATH  Google Scholar 

  13. M. Karpovsky, “Weight Distribution of Translates, covering radius and perfect codes correcting errors of the given multiplicities,” IEEE Trans. Inform. Theory IT-27, pp. 462–472, 1981.

    CrossRef  MathSciNet  Google Scholar 

  14. J. E. MacDonald, “Design methods for maximum minimum-distance error-correcting codes,” IBM J. Res. Devel. vol. 4, pp. 43–57, 1960.

    CrossRef  MathSciNet  Google Scholar 

  15. N. V. Semakov, V. A. Zinoviev, G. V. Zaitsev, “Uniformly Packed Codes,” Problems of Inform. Transmission, vol. 7, 1971, no. 1, pp. 38–50.

    MATH  Google Scholar 

  16. Th. Skolem, P. Chowla, and D. J. Lewis, “The Diophantine equation 2n-2-7 = x 2 and related problems,” Proc. Amer. Math. Soc. 10 (1959), pp. 663–669.

    MATH  MathSciNet  Google Scholar 

  17. G. J. M. van Wee, G. D. Cohen, S. N. Litsyn, “A note on Perfect Multiple Coverings of Hamming Spaces,” IEEE Trans. Inform. Theory, vol. 37, no. 3, pp. 678–682, May 1991.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Cohen, G.D., Litsyn, S.N., Mattson, H.F. (1993). Binary Perfect Weighted Coverings (PWC). In: Capocelli, R., De Santis, A., Vaccaro, U. (eds) Sequences II. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9323-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9323-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9325-2

  • Online ISBN: 978-1-4613-9323-8

  • eBook Packages: Springer Book Archive