Sequences II pp 470-476 | Cite as

Synchronizing Automata

  • Dominique Perrin
Conference paper


In this paper, we survey some recent results on synchronizing words for automata. We discuss in particular partial solutions of the so-called road coloring problem.


Finite Automaton Variable Length Code Markov Shift Prefix Code Minimal Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler (R.L.), Goodwin (L.W.), Weiss (B.). — Equivalence of topological Markov shifts, Israel J. Math., t. 27, 1977, p. 49–63.MATHCrossRefGoogle Scholar
  2. Berstel (J.), Perrin (D.). — Theory of Codes. — Academic Press, 1985.MATHGoogle Scholar
  3. Friedman (J.). — On the road coloring problem, Proc. Amer. Math Soc., t. 110, 1990, p. 1133–35..MATHCrossRefMathSciNetGoogle Scholar
  4. O’Brien (G.L.). — The road coloring problem, Israel J. Math., t. 39, 1981, p. 145–154.MATHCrossRefMathSciNetGoogle Scholar
  5. Perrin (D.). — Codes asynchrones, Bull. Soc. Math, de France, t. 105, 1977, p. 385–404.MATHMathSciNetGoogle Scholar
  6. Perrin (D.), Schützenberger (M.-P). — Synchronizing prefix codes and automata, and the road coloring problem, 1991, submitted for publication.Google Scholar
  7. Pin (J.E.). — Le problème de la synchronisation. Contribution à l’étude de la conjecture de Cerny, Thèse, 1978, Université Paris VI.Google Scholar
  8. Reutenauer (C.). — Non commutative factorizations of variable length codes, J. Pure applied Algebra, t. 36, 1985, p. 167–186.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Dominique Perrin
    • 1
  1. 1.Institut Blaise PascalParisFrance

Personalised recommendations