Skip to main content

Identification of Linear Systems from Noisy Data

  • Conference paper
New Directions in Time Series Analysis

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 46))

Abstract

In this paper linear dynamic errors-in-variables models with mutually uncorrelated noise components are considered. A main complication in identification here is that the systems are not uniquely determined from the (ensemble) second moments of the observations. In this paper we analyze certain properties of the set of all observationally equivalent systems. In addition we derive continuity results for the relation between the spectral densities of the observations and the sets of observationally equivalent systems. Finally we describe the sets of spectral densities corresponding to a given Frisch-corank. The results obtained are of importance for developing and analyzing identification algorithms.

Support by the Austrian “Fonds zur Förderung der wissenschaftlichen Forschung” Projekt P7580 — TEC is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Adcock, A problem in least squares, The Analyst, 5 (1878), pp. 53–54.

    Article  Google Scholar 

  2. D.J. Aigner, C. Hsiao, A. Kapteyn and T. Wansbeck, Latent variable models in econometrics, in Z. Griliches and M.D. Intriligator, eds., Handbook of econometrics, North Holland, Amsterdam (1984).

    Google Scholar 

  3. B.D.O. Anderson and M. Deistler, Identifiability in dynamic errors-in-variables models, Journal of Time Series Analysis, 5 (1984), pp. 1–13.

    Article  MathSciNet  Google Scholar 

  4. B.D.O. Anderson and M. Deistler, Identification of dynamic systems from noisy Data: The case m* = n - 1., MIMEO (1990).

    MATH  Google Scholar 

  5. T.W. Anderson, Estimating linear statistical relationships, Annals of Statistics, 12 (1984), pp.1–45.

    Article  MathSciNet  MATH  Google Scholar 

  6. T.W. Anderson and H. Rubin, Statistical inference in factor analysis, in J. Neyman, ed., Proceedings of the third Berkeley Symposium on mathematical statistics and probability,, University of California Press, Berkeley and Los Angeles, 5 (1956), pp. 111–150.

    Google Scholar 

  7. L. Auslander and R. E. Mackenzie, Differentiale Manifolds, Dover Publications, New York, 1977.

    Google Scholar 

  8. P. Bekker and J. de Leeuw, The rank of reduced dispersion matrices, Psychometrica, 52 (1987), pp. 125–135.

    Article  MATH  Google Scholar 

  9. T. Bröcker and K. Janich, Einführung in die Differentialtopologie, Springer-Verlag, Berlin Heidelberg New York, 1973.

    MATH  Google Scholar 

  10. E.P. Caines, Linear Stochastic Systems, John Wiley & Sons, New York, 1988.

    MATH  Google Scholar 

  11. M. Deistler, Linear system identification — a survey, in J. Willems, ed., From data to model,, Springer Verlag, Berlin (1989), pp. 1–25.

    Google Scholar 

  12. M. Deistler, Symmetric modeling in system identification, in H. Nijmeijer and J.M. Schuhmacher, eds., Three Decades of Mathematical System Theory, Springer Lecture Notes in Control and Information Sciences, Springer Verlag, Berlin, 135 (1989), pp. 128–147.

    Google Scholar 

  13. M. Deistler and B.D.O. Anderson, Linear dynamic errors-in-variables models, some structure theory, Journal of Econometrics, 41 (1989), pp. 39–63.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Deistler and B.D.O. Anderson, Identification of dynamic systems from noisy Data: The case m* = 1., in Festschrift for R.E. Kaiman, Springer Verlag (to appear).

    Google Scholar 

  15. J.P. Dufour, Resultats generiques en Analyse Factorielle, Universite des Sciences et Techniques du Languedoc, Institut de Mathematiques — Seminaire de Geometrie Differentielle (1982–1983).

    Google Scholar 

  16. R. Engle and M. Watson, A one-factor multivariate time series model of metropolitan wage rates, Journal of the American Statistical Asociation, 76 (1981), pp. 774–781.

    Article  Google Scholar 

  17. R. Frisch, Statistical confluence analysis by means of complete regression systems, Publication No. 5, University of Oslo, Economic Institute, (1934), pp. 192.

    MATH  Google Scholar 

  18. W.A. Fuller, Measurement error models, Wiley, New York, 1987.

    Book  MATH  Google Scholar 

  19. J.F. Geweke, The dynamic factor analysis of economic time series, in D. Aigner and A. Goldberger, eds., Latent variables in socioeconomic models, North Holland, Amsterdam (1977).

    Google Scholar 

  20. C. Gini, Sull’interpolazione de una retta quando i valori della variabile indipendente sono affetti da errori accidentali, Metron, 1 (1921), pp. 63–82.

    Google Scholar 

  21. R.P. Guidorzi, certain models for uncertain data: the dynamic case, MIMEO (1990).

    Google Scholar 

  22. E.J. Hannan and M. Deistler, The Statistical Theory of Linear Systems, John Wiley & Sons, New York, 1988.

    MATH  Google Scholar 

  23. R.E. Kalman, System identification from noisy data, in Bednarek A. and Cesari L., eds., Dynamical Systems II, a University of Florida international Symposium, Academic Press, New York (1982).

    Google Scholar 

  24. R.E. Kalman, Identifiability and modeling in econometrics, in Krishnaiah, ed., Developments in statistics, Academic Press, New York, 4 (1983).

    Google Scholar 

  25. W. Ledermann, On the rank of the reduced correlational matrix in multiple factor analysis, Psychometrika, 2, No. 2 (1938), pp. 85–93.

    Article  Google Scholar 

  26. L. Ljung, System Identification — Theory for the User, Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1987.

    MATH  Google Scholar 

  27. C. A. Los, The prejudices of least squares, principal components and common factor schemes, Computers & Mathematics with Applications, 17, No. 8/9 (1989), pp. 1269–1283.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Maravall, Identification in dynamic shock-error models, Springer-Verlag, Berlin, 1979.

    MATH  Google Scholar 

  29. E. Nowak, Global identification of the dynamic shock-error model, Journal of Econometrics, 27 (1985), pp. 211–219.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Picci and S. Pinzoni, Dynamic factor-analysis models for stationary processes, IMA Journal of Mathematical Control and Information, 3 (1986), pp. 185–210.

    Article  Google Scholar 

  31. W. Schachermayer and M. Deistler, Identification of linear systems from noisy data with uncorrelated error components: some structure theory, Mimeo (1990).

    Google Scholar 

  32. A. Shapiro, Identifiability of Factor Analysis: Some Results and Open Problems, Linear Algebra and its Applications, 70 (1985), pp. 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Schneeweiss and H.J. Mittag, Lineare Modelle mit fehlerbehafteten Daten, Physica Verlag, Heidelberg, 1986.

    Book  Google Scholar 

  34. T. Söderström, Spectral decomposition with application to identification, in F. Archetti and M. Dugiani, eds., Numerical techniques for stochastic systems, North Holland, Amsterdam (1980).

    Google Scholar 

  35. T. Söderström, P. Stoica, System identification, Prentice Hall, 1989.

    MATH  Google Scholar 

  36. C. Spearman, General intelligence, objectively determined and measured, Amer. Jour. Psych., 15 (1904), pp. 201–293.

    Article  Google Scholar 

  37. J.H. van Schuppen, Stochastic realization problems, in H. Nijmeijer and J.M. Schuhmacher, eds., Three Decades of Mathematical System Theory, Springer Lecture Notes in Control and Information Sciences, Springer Verlag, Berlin, 135 (1989), pp. 480–523.

    Chapter  Google Scholar 

  38. J.C. Willems, From time series to linear systems, Automatica, 22 (1986), pp. 561–580.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Deistler, M., Scherrer, W. (1993). Identification of Linear Systems from Noisy Data. In: Brillinger, D., Caines, P., Geweke, J., Parzen, E., Rosenblatt, M., Taqqu, M.S. (eds) New Directions in Time Series Analysis. The IMA Volumes in Mathematics and its Applications, vol 46. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9296-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9296-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9298-9

  • Online ISBN: 978-1-4613-9296-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics