Skip to main content

On Approximate Modeling of Linear Gaussian Processes

  • Conference paper
New Directions in Time Series Analysis

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 46))

  • 382 Accesses

Abstract

The problem we consider here is the elimination of the redundant complexity in the modeling of stationary time series by means of stochastic realization theory. The question is posed in terms of approximate modeling of a gaussian process. It is shown that a minimal representation of the process can be obtained with a very simple algorithm of polynomial complexity from a nonminimal one, and that this algorithm can be extended to give an approximate realization of fixed degree k We also show that different realizations yield different approximation errors, and discuss how to choose the representation which gives the best approximant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahren, P.R., and Clark, D.N., On functions orthogonal to invariant subspaces Acta. Math. 124 (1970), pp. 191–204.

    Article  MathSciNet  Google Scholar 

  2. Caines, P.E., On the scientific method and the foundations of system identification Modelling, Identification and Robust Control, C.I. Byrnes and A. Lindquist Eds., Elsevier Science Publisher B.V. North Holland, 1986.

    Google Scholar 

  3. Dewilde, P., and Dym, H., Schur recursion, error formulas, and convergence of rational estimators for stationary stochastic sequences IEEE Trans. Inform. Theory, IT-27 (1981), pp. 446–461.

    Article  MathSciNet  Google Scholar 

  4. Georgiou, T.T., and Khargonekar, P.P., Spectral factorization and the Nevanlinna-Pick interpolation SIAM J. Control and Optimization, Vol. 24 (1988), pp. 754–766.

    MathSciNet  Google Scholar 

  5. Gohberg, I., Lancaster, P., and Rodman L., Invariant subspaces of matrices John Wiley & Sons (1986).

    MATH  Google Scholar 

  6. Gombani, A., Consistent approximations of linear stochastic models SIAM Journal on Control and Optimization, 27 (1989), pp. 83–107.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lindquist, A., and Pavon, M., On the structure of state space models for discrete-time stochastic vector processes IEEE Trans. Automatic Control, AC-29 (1984), pp. 418–432.

    Article  MathSciNet  Google Scholar 

  8. Lindquist, A., and Picci, G., Realization Theory for Multivariate Stationary Gaussian Processes, SIAM J. Control and Optimization, Vol. 23, No. 6 (1985), pp. 809–857.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ljung, L., and Söderstöm, T., Theory and practice of recursive identification MIT Press, Cambridge, Mass. (1989).

    Google Scholar 

  10. Nikol’skii, N.K., Treatise on the shift operator Springer-Verlag (1986).

    MATH  Google Scholar 

  11. Rozanov, Y.A., Stationary Random Processes, Holden-Day (1987).

    Google Scholar 

  12. Fuhrmann, P.A., Linear Systems and Operators in Hilbert Space, McGraw-Hill (1981).

    Google Scholar 

  13. Walsh, J.L., Interpolation and approximation by rational functions in the complex domain Amer. Math. Soc. Coll. Publ. 20 (1935).

    Google Scholar 

  14. Nagy, B.Sz., and Foias, C, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam (1970).

    Google Scholar 

  15. Baratchart, L., and Olivi, M., New tools in rational L 2 approximationPreprints of the 8th IFAC Symposium on Identification and System Parameter Estimation, Beijing China (1988), pp. 1014–1019.

    Google Scholar 

  16. Hannan, E.J., and Deistler, M., The Statistical Theory of Linear Systems, Wiley (1988).

    Google Scholar 

  17. Caines, P.E., Linear Stochastic Systems, Wiley (1988).

    Google Scholar 

  18. Gombani, A., On approximate stochastic realizations to appear in Mathematics of Control, Signals and Systems.

    Google Scholar 

  19. Gombani, A., On the multivariable approximate stochastic realization problem to appear in Stochastics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Gombani, A., Polini, C. (1993). On Approximate Modeling of Linear Gaussian Processes. In: Brillinger, D., Caines, P., Geweke, J., Parzen, E., Rosenblatt, M., Taqqu, M.S. (eds) New Directions in Time Series Analysis. The IMA Volumes in Mathematics and its Applications, vol 46. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9296-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9296-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9298-9

  • Online ISBN: 978-1-4613-9296-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics