Elementary Configurations of Simple Detonation

  • Roger Chéret
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

In all laboratories engaged in the characterization of explosives and the study of detonation phenomena, there is a long-standing tradition which prefers simple detonation “regimes” where waves are propagated by mere translation with a permanent velocity D parallel to the direction i related to the location of the firing station. (N.B. The superscript p shows only, as in §II.3.3, that such propagation is endowed with a privileged plane direction which is normal to i; however, it must be borne in mind that referring to this regime as “plane” is only a widely accepted misuse.) But it is worth paying attention to such a persistent, widespread tradition, to find its good points … and underline its bad points.

Keywords

Entropy Methane Argon Explosive Drilling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aveillé, J. et al. Célérité de détonation et profondeur d’amorçage de deux compositions explosives à base d’octogène et de TATB. Proc. Colloque Pyr. Fond et App., Arcachon/France (1982), p. 396.Google Scholar
  2. [2]
    Aveillé, J., Baconin, J., Carion, N., Zoé, J. Experimental study of spherically diverging detonation waves. Proc. 8th Symposium on Detonation, Albuquer­que/NM (1985), p. 151.Google Scholar
  3. [3]
    Bahl, K.L., Lee, R S., Weingart, R.C. Velocity of spherically diverging detona­tion waves. Proc. APS Meeting on Shock Waves, Santa Fe/NM (1983), p. 559.Google Scholar
  4. [4]
    Brochet, C., Brossard, J., Manson, N., Cheret, R., Verdes, G. A comparison of spherical, cylindrical and plane detonation velocities in some condensed and gaseous explosives. Proc. 5th Symposium on Detonation, Pasadena/CA (1970), p. 41.Google Scholar
  5. [5]
    Brun, L., Cheret, R., Vacellier, J. Considérations sur les détonations fortes. Proc. Symposium H.D.P., Paris/France (1978), p. 269.Google Scholar
  6. [6]
    Campbell, A.W., Davis, W.C., Travis, J.R. Shock initiation of detonation in liquid explosives. Phys. Fluids, 4 (1960), p. 498.ADSCrossRefGoogle Scholar
  7. [7]
    Cheret, R. Contribution à l’étude des détonations sphériques divergentes dans les explosifs solides. Thèse de Doctorat ès Sciences, Poitiers/France (1971). Rap­port CEA no. 4283.Google Scholar
  8. [8]
    Cheret, R. Emergence d’une détonation quasi C.-J. sur le bord libre d’un domaine explosif. C. R. Acad. Sci. Paris, , Series II 301 (1985), p. 657.MathSciNetGoogle Scholar
  9. [9]
    Cheret, R., Aveillé, J., Carion, N. Emergence d’une détonation quasi C.-J. sur le bord libre d’un domaine explosif. C. R. Acad. Sci. Paris,, Series II 303 (1986), p. 1.Google Scholar
  10. [10]
    Cheret, R., Chaissé, F., Zoe, J. Some results on the converging spherical detonation in a solid explosive. Proc. 7th Symposium on Detonation,Annapolis/MD (1981), p. 602.Google Scholar
  11. [11]
    Cheret, R., Verdes, G. Détonation sphérique divergente du nitrométhane. Mémorial de l’Artillerie Francaise, 48, 3 (1974), p. 687.Google Scholar
  12. [12]
    Courant, R., Friedrichs, K.O. Supersonic Flow and Shock Waves. Interscience, New York (1948).MATHGoogle Scholar
  13. [13]
    Droux, R., Mouchel, C. Etude du comportement sous choc d’explosifs hétérogènes. Proc. Symposium H.D.P., Paris/France (1978), p. 103.Google Scholar
  14. [14]
    Drummond, W.E. Explosive induced shock waves. Part II. Oblique shock waves. J. Appl. Phys., 29, 2 (1958), p. 167.ADSMATHCrossRefGoogle Scholar
  15. [15]
    Hamada, L., Presles, H.N., Brochet, C. Bouriannes, R., Cheret, R. Characterization of an overdriven detonation state in nitromethane. Prog. Astronaut. Aeronaut., 94 (1985), p. 343.Google Scholar
  16. [16]
    Jouguet, E. Mécanique des Explosifs. Octave Doin, Paris/France (1917).Google Scholar
  17. [17]
    Krishnan, S., Brochet, C., Cheret, R. Mach reflexion in condensed explosives. Propellants and Explosives, 6 (1981), p. 170.CrossRefGoogle Scholar
  18. [18]
    Mach, E. Sitzungsberichte Akad. Sci.,78, Wien/Österreich (1878), p. 819.Google Scholar
  19. [19]
    Pack, D.D. Reflection and transmission of shock waves. Phil. Mag., 2, 14 (1957), p. 182.MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    Pinégre, M. et al. Expansion isentropes of TATB compositions released into argon. Proc. 8th Symposium on Detonation, Albuquerque/NM (1985), p. 815.Google Scholar
  21. [21]
    Sellam, M., Presles, H.N., Brochet, C., Cheret, R. Characterization of strong detonation waves in nitromethane. Proc. 8th Symposium on Detonation, Albu­querque/NM (1985), p. 425.Google Scholar
  22. [22]
    Sternberg, H.M., Piacesi, D. Interaction of oblique detonation waves with iron. Phys. Fluids, 9, 7 (1966), p. 1307.ADSCrossRefGoogle Scholar
  23. [23]
    Walsh, J.M., Shreffler, R.G., Willig, I.J. Limiting conditions for jet forma­tion in high velocity collisions. J. Appl. Phys., 24, 3 (1953), p. 349.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Roger Chéret
    • 1
  1. 1.Commissariat a l’Energie AtomiqueParis Cedex 15France

Personalised recommendations