Elementary Configurations of Simple Detonation

  • Roger Chéret
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)


In all laboratories engaged in the characterization of explosives and the study of detonation phenomena, there is a long-standing tradition which prefers simple detonation “regimes” where waves are propagated by mere translation with a permanent velocity D parallel to the direction i related to the location of the firing station. (N.B. The superscript p shows only, as in §II.3.3, that such propagation is endowed with a privileged plane direction which is normal to i; however, it must be borne in mind that referring to this regime as “plane” is only a widely accepted misuse.) But it is worth paying attention to such a persistent, widespread tradition, to find its good points … and underline its bad points.


Free Boundary Detonation Wave Detonation Product Liquid Explosive Solid Explosive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aveillé, J. et al. Célérité de détonation et profondeur d’amorçage de deux compositions explosives à base d’octogène et de TATB. Proc. Colloque Pyr. Fond et App., Arcachon/France (1982), p. 396.Google Scholar
  2. [2]
    Aveillé, J., Baconin, J., Carion, N., Zoé, J. Experimental study of spherically diverging detonation waves. Proc. 8th Symposium on Detonation, Albuquer­que/NM (1985), p. 151.Google Scholar
  3. [3]
    Bahl, K.L., Lee, R S., Weingart, R.C. Velocity of spherically diverging detona­tion waves. Proc. APS Meeting on Shock Waves, Santa Fe/NM (1983), p. 559.Google Scholar
  4. [4]
    Brochet, C., Brossard, J., Manson, N., Cheret, R., Verdes, G. A comparison of spherical, cylindrical and plane detonation velocities in some condensed and gaseous explosives. Proc. 5th Symposium on Detonation, Pasadena/CA (1970), p. 41.Google Scholar
  5. [5]
    Brun, L., Cheret, R., Vacellier, J. Considérations sur les détonations fortes. Proc. Symposium H.D.P., Paris/France (1978), p. 269.Google Scholar
  6. [6]
    Campbell, A.W., Davis, W.C., Travis, J.R. Shock initiation of detonation in liquid explosives. Phys. Fluids, 4 (1960), p. 498.ADSCrossRefGoogle Scholar
  7. [7]
    Cheret, R. Contribution à l’étude des détonations sphériques divergentes dans les explosifs solides. Thèse de Doctorat ès Sciences, Poitiers/France (1971). Rap­port CEA no. 4283.Google Scholar
  8. [8]
    Cheret, R. Emergence d’une détonation quasi C.-J. sur le bord libre d’un domaine explosif. C. R. Acad. Sci. Paris, , Series II 301 (1985), p. 657.MathSciNetGoogle Scholar
  9. [9]
    Cheret, R., Aveillé, J., Carion, N. Emergence d’une détonation quasi C.-J. sur le bord libre d’un domaine explosif. C. R. Acad. Sci. Paris,, Series II 303 (1986), p. 1.Google Scholar
  10. [10]
    Cheret, R., Chaissé, F., Zoe, J. Some results on the converging spherical detonation in a solid explosive. Proc. 7th Symposium on Detonation,Annapolis/MD (1981), p. 602.Google Scholar
  11. [11]
    Cheret, R., Verdes, G. Détonation sphérique divergente du nitrométhane. Mémorial de l’Artillerie Francaise, 48, 3 (1974), p. 687.Google Scholar
  12. [12]
    Courant, R., Friedrichs, K.O. Supersonic Flow and Shock Waves. Interscience, New York (1948).MATHGoogle Scholar
  13. [13]
    Droux, R., Mouchel, C. Etude du comportement sous choc d’explosifs hétérogènes. Proc. Symposium H.D.P., Paris/France (1978), p. 103.Google Scholar
  14. [14]
    Drummond, W.E. Explosive induced shock waves. Part II. Oblique shock waves. J. Appl. Phys., 29, 2 (1958), p. 167.ADSMATHCrossRefGoogle Scholar
  15. [15]
    Hamada, L., Presles, H.N., Brochet, C. Bouriannes, R., Cheret, R. Characterization of an overdriven detonation state in nitromethane. Prog. Astronaut. Aeronaut., 94 (1985), p. 343.Google Scholar
  16. [16]
    Jouguet, E. Mécanique des Explosifs. Octave Doin, Paris/France (1917).Google Scholar
  17. [17]
    Krishnan, S., Brochet, C., Cheret, R. Mach reflexion in condensed explosives. Propellants and Explosives, 6 (1981), p. 170.CrossRefGoogle Scholar
  18. [18]
    Mach, E. Sitzungsberichte Akad. Sci.,78, Wien/Österreich (1878), p. 819.Google Scholar
  19. [19]
    Pack, D.D. Reflection and transmission of shock waves. Phil. Mag., 2, 14 (1957), p. 182.MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    Pinégre, M. et al. Expansion isentropes of TATB compositions released into argon. Proc. 8th Symposium on Detonation, Albuquerque/NM (1985), p. 815.Google Scholar
  21. [21]
    Sellam, M., Presles, H.N., Brochet, C., Cheret, R. Characterization of strong detonation waves in nitromethane. Proc. 8th Symposium on Detonation, Albu­querque/NM (1985), p. 425.Google Scholar
  22. [22]
    Sternberg, H.M., Piacesi, D. Interaction of oblique detonation waves with iron. Phys. Fluids, 9, 7 (1966), p. 1307.ADSCrossRefGoogle Scholar
  23. [23]
    Walsh, J.M., Shreffler, R.G., Willig, I.J. Limiting conditions for jet forma­tion in high velocity collisions. J. Appl. Phys., 24, 3 (1953), p. 349.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Roger Chéret
    • 1
  1. 1.Commissariat a l’Energie AtomiqueParis Cedex 15France

Personalised recommendations