Advertisement

Growth Factors and the Retina: Normal Vascularization and Pathologic Neovascularization

  • Robert N. Frank
  • Laura B. Sotolongo
Part of the Endocrinology and Metabolism book series (EAM, volume 5)

Abstract

Growth of blood vessels within the human retina is normally completed at birth, and in other mammalian species that have been studied, including dogs, cats, mice, and rats, retinal vascularization stops within a few weeks after birth.*1 Studies of the retinas of normal adult mice and rats, using [3H]-thymidine autoradiography, have shown minimal labeling (0.01–0.1%) of vascular cell nuclei.5,6 This indicates that retinal vascular cells normally turn over scarcely at all during adult life. Thus, whenever vascular cell proliferation occurs in the adult retina, it is pathologic. The new vessels that are observed are always structurally and functionally abnormal. Although new vessels derived from the retinal circulation by definition begin their growth within the retina,7 eventually they always grow inwardly, break through the inner limiting membrane of the retina, and continue their growth on the vitreal surface of the inner limiting membrane, or actually within the vitreous (Fig. 2.1). Unlike normal vessels, retinal new vessels have thinned and often fenestrated endothelial

Keywords

Diabetic Retinopathy Retinal Pigment Epithelium Basic Fibroblast Growth Factor Retinal Pigment Epithelial Cell Proliferative Diabetic Retinopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wise GN, Dollery CT, Henkind P.The retinal circulation. Hagerstown, MD: Harper & Row; 1971: Development of retinal vessels. 1–18.Google Scholar
  2. 2.
    Wise GN, Dollery CT, Henkind P.The retinal circulation. Hagerstown, MD: Harper & Row; 1971: Phylogeny and retinal vessels in selected animals. 68–82.Google Scholar
  3. 3.
    Lowry OH, Roberts NR, Lewis C. The quantitative histochemistry of the retina.J Biol Chem. 1956; 220: 879–892.PubMedGoogle Scholar
  4. 4.
    Lowry OH, Roberts NR, Schulz DW, Clow JE, Clark JR. Quantitative histochemistry of retina. II. Enzymes of glucose metabolism.J Biol Chem. 1961; 236: 2813–2820.PubMedGoogle Scholar
  5. 5.
    Engerman RL, Pfaffenbach D, Davis MD. Cell turnover of capillaries.Lab Invest. 1967; 17: 738–743.PubMedGoogle Scholar
  6. 6.
    Wise GN, Dollery CT, Henkind P.The retinal circulation. Hagerstown, MD: Harper & Row; 1971: Chapter 3, Structure of retinal vessels. 34–54.Google Scholar
  7. 7.
    DeVenecia G, Davis MD. Histology and fluorescein angiography of microaneurysms in diabetes mellitus.Invest Ophthalmol. 1967; 6: 555.Google Scholar
  8. 8.
    The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: clinical application of Diabetic Retinopathy Study (DRS) findings. DRS Report Number 8.Ophthalmology. 1981; 88: 583–600.Google Scholar
  9. 9.
    Branch Vein Occlusion Study Group. Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion: a randomized clinical trial.Arch Ophthalmol. 1986; 104: 34–41.Google Scholar
  10. 10.
    Macular Photocoagulation Study Group. Argon laser photocoagulation for senile macular degeneration: results of a randomized clinical trial.Arch Ophthalmol. 1982; 100: 912–918.Google Scholar
  11. 11.
    Macular Photocoagulation Study Group. Argon laser photocoagulation for ocular histoplasmosis: results of a randomized clinical trial.Arch Ophthalmol. 1983; 101: 1347–1357.Google Scholar
  12. 12.
    Macular Photocoagulation Study Group. Krypton laser photocoagulation for neovascular lesions of ocular histoplasmosis: results of a randomized clinical trial.Arch Ophthalmol. 1987; 105: 1499–1507.Google Scholar
  13. 13.
    Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy: three-year results from randomized trials.Arch Ophthalmol. 1986; 104: 694–701.Google Scholar
  14. 14.
    Condon P, Jampol LM, Farber MD, Rabb M, Serjeant G. A randomized clinical trial of feeder vessel photocoagulation of proliferative sickle cell retinopathy. II. Update and analysis of risk factors.Ophthalmology. 1984; 91: 1496–1498.PubMedGoogle Scholar
  15. 15.
    Michaelson IC. The mode of development of the vascular system of the retina: with some observations on its significance in certain retinal diseases.Trans Ophthalmol Soc. 1948; 68: 137–180.Google Scholar
  16. 16.
    Wise GN. Retinal neovascularization.Trans Am Ophthalmol Soc. 1956; 54: 729–826.PubMedGoogle Scholar
  17. 17.
    Levi-Montalcini R. The nerve growth factor 35 years later.Science. 1987; 237: 1154–1162.PubMedCrossRefGoogle Scholar
  18. 18.
    Cohen S, Taylor JM. Epidermal growth factor: chemical and biological characterization.Rec Prog Hormone Res. 1974; 30: 533–550.Google Scholar
  19. 19.
    Gospodarowicz D. Purification of a fibroblast growth factor from bovine pituitary.J Biol Chem. 1975; 250: 2515–2519.PubMedGoogle Scholar
  20. 20.
    Bohlen P, Esch F, Baird A, Gospodarowicz D. Acidic fibroblast growth factor from bovine brain. Amino terminal sequence and comparison to basic fibroblast growth factor.EMBO J. 1985; 4: 1951–1956.PubMedGoogle Scholar
  21. 21.
    Abraham JA, Whang JL, Tumolo A, Fiddes JC. Human basic fibroblast growth factor: nucleotide sequence, genomic organization, and expression in mammalian cells.Cold Spring Harbor Symp Quant Biol. 1986; 51: 657–668.PubMedGoogle Scholar
  22. 22.
    D’Amore PA, Glaser BM, Brunson SK, Fenselau AH. Angiogenic activity from bovine retina: partial purification and characterization.Proc Nat Acad Sci USA. 1981; 78: 3068–3072.PubMedCrossRefGoogle Scholar
  23. 23.
    Schreiber AB, Kenney J, Kowalski WJ, Thomas KA, Giminez Gallego G, Rios Candelore M, DiSalvo J, Barritault D, Courty J, Courtois Y, Moenner M, Loret C, Burgess WH, Mehlman T, Friesel R, Johnson W, Maciag T. A unique family of endothelial cell polypeptide mitogens: the antigen and receptor cross reactivity of bovine endothelial cell growth factor, brain derived acidic fibroblast growth factor, and eye derived growth factor II.J Cell Biol. 1985; 101: 1623–1626.PubMedCrossRefGoogle Scholar
  24. 24.
    Baird A, Esch F, Gospodarowicz D. Retina- and eye-derived endothelial cell growth factors: partial molecular characterization and identity with acidic and basic fibroblast growth factors.Biochemistry. 1985; 24: 7855–7860.PubMedCrossRefGoogle Scholar
  25. 25.
    Schweigerer L, Neufeld G, Friedman J, Abraham JA, Fiddes JC, Gospodarowicz D. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth.Nature. 1987; 325: 257–259.PubMedCrossRefGoogle Scholar
  26. 26.
    Schweigerer L, Malerstein B, Neufeld G, Gospodarowicz D. Basic fibroblast growth factor is synthesized in cultured retinal pigment epithelial cells.Biochem Biophys Res Commun. 1987; 143: 934–940.PubMedCrossRefGoogle Scholar
  27. 27.
    Reidy CA, Frank RN, Kennedy A, Das A. Aqueous extracts of bovine retinas contain a glial modulating factor.Invest Ophthalmol Vis Sci. 1988; 29 (Suppl): 243.Google Scholar
  28. 28.
    Lim R, Mitsunobu K. Brain cells in culture: morphological transformation by a protein.Science. 1974; 185: 63–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Jaye M, Howk R, Burgess W, Ricca GA, Chiu I-M, Ravera MW, O’Brien SJ, Modi WS, Maciag T, Drohan WN. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization.Science. 1986; 233: 541–545.PubMedCrossRefGoogle Scholar
  30. 30.
    Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA, Gospodarowicz D, Fiddes JC. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor.Science. 1986; 233: 545–548.PubMedCrossRefGoogle Scholar
  31. 31.
    Vlodavsky I, Fridman R, Sullivan R, Sasse J, Klagsbrun M. Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted.J Cell Physiol. 1987; 13: 402–408.CrossRefGoogle Scholar
  32. 32.
    Folkman J, Klagsbrun M. Angiogenic factors.Science. 1987; 235: 442–447.PubMedCrossRefGoogle Scholar
  33. 33.
    D’Amore PA. Antiangiogenesis as a strategy for antimetastasis.Semin Thromb Hemost. 1988; 14: 73–78.PubMedCrossRefGoogle Scholar
  34. 34.
    Glaser BM. Extracellular modulating factors and the control of intraocular neovascularization.Arch Ophthalmol. 1988; 106: 603–607.PubMedGoogle Scholar
  35. 35.
    Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins.Annu Rev Biochem. 1989; 58: 575–606.PubMedCrossRefGoogle Scholar
  36. 36.
    Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. A heparin-binding angiogenic protein—basic fibroblast growth factor—is stored within basement membrane.Am J Pathol. 1988; 130: 393–400.PubMedGoogle Scholar
  37. 37.
    Vigny M, Ollier-Hartmann MP, Lavigne M, Fayein N, Jeanny JC, Laurent M, Courtois Y. Specific binding of basic fibroblast growth factor to basement membrane-like structures and to purified heparan sulfate proteoglycan of the EHS tumor.J Cell Physiol. 1988; 137: 321–328.PubMedCrossRefGoogle Scholar
  38. 38.
    Gonzalez A-M, Buscaglia M, Ong M, Baird A. Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues.J Cell Biol. 1990; 110: 753–765.PubMedCrossRefGoogle Scholar
  39. 39.
    Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures.J Cell Biol. 1988; 107: 1589–1598.PubMedCrossRefGoogle Scholar
  40. 40.
    Kennedy A, Frank RN, Sotolongo LB, Das A, Zhang NL. Proliferative response and macromolecular synthesis by ocular cells cultured on extracellular matrix materials.Curr Eye Res. 1990; 9: 307–322.PubMedCrossRefGoogle Scholar
  41. 41.
    Rohrbach DH, Wagner CW, Star VL, Martin GR, Brown KS, Yoon JW. Reduced synthesis of basement membrane heparan sulfate proteoglycan in streptozotocin-induced diabetic mice.J Biol Chem. 1983; 258: 11672–11677.PubMedGoogle Scholar
  42. 42.
    Das A, Frank RN, Zhang NL, Samadani E. Increases in collagen type IV and laminin in galactose-induced retinal capillary basement membrane thickening—prevention by an aldose reductase inhibitor.Exp Eye Res. 1990; 50: 269–280.PubMedCrossRefGoogle Scholar
  43. 43.
    Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy.Arch Ophthalmol. 1961; 66: 366–378.PubMedGoogle Scholar
  44. 44.
    Orlidge A, D’Amore PA. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells.J Cell Biol. 1987; 105: 1455–1462.PubMedCrossRefGoogle Scholar
  45. 45.
    Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes.Proc Natl Acad Sci USA. 1989; 86: 4544–4548.PubMedCrossRefGoogle Scholar
  46. 46.
    Carlson E. Fenestrated subendothelial basement membranes in human retinal capillaries.Invest Ophthalmol Vis Sci. 1989; 30: 1923–1932.PubMedGoogle Scholar
  47. 47.
    Robison WG Jr, Nagata M, Tillis TN, Laver N, Kinoshita JH. Aldose reductase and pericyte-endothelial contacts in retina and optic nerve.Invest Ophthalmol Vis Sci. 1989; 30: 2293–2299.PubMedGoogle Scholar
  48. 48.
    Frank RN, Dutta S, Mancini MA. Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat.Invest Ophthalmol Vis Sci. 1987; 28: 1086–1091.PubMedGoogle Scholar
  49. 49.
    Frank RN, Turczyn TJ, Das A. Pericyte coverage of retinal and cerebral capillaries.Invest Ophthalmol Vis Sci. 1990; 31: 999–1007.PubMedGoogle Scholar
  50. 50.
    DeOliveira F. Pericytes in diabetic retinopathy.Br J Ophthalmol. 1966; 50: 134–143.CrossRefGoogle Scholar
  51. 51.
    Kador PF, Akagi Y, Takahashi Y, et al. Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors.Arch Ophthalmol. 1990; 108: 1301–1309.PubMedGoogle Scholar
  52. 52.
    Hanneken A, Lutty GA, McLeod DS, Robey F, Harvey AK, Hjelmeland LM. Localization of basic fibroblast growth factor to the developing capillaries of the bovine retina.J Cell Physiol. 1989; 138: 115–120.PubMedCrossRefGoogle Scholar
  53. 53.
    Wagner JA, D’Amore PA. Neurite outgrowth induced by an endothelial cell mitogen isolated from retina.J Cell Biol. 1986; 103: 1363–1367.PubMedCrossRefGoogle Scholar
  54. 54.
    King GL, Buzney SM, Kahn CR, Hetu N, Buchwald S, Macdonald SG, Rand LI. Differential responsiveness to insulin of endothelial and support cells from micro- and macrovessels.J Clin Invest. 1983; 71: 974–979.PubMedCrossRefGoogle Scholar
  55. 55.
    King GL, Goodman AD, Buzney S, Moses A, Kahn CR. Receptors and growthpromoting effects of insulin and insulin-like growth factors on cells from bovine retinal capillaries and aorta.J Clin Invest. 1985; 75: 1028–1036.PubMedCrossRefGoogle Scholar
  56. 56.
    Merimee TJ, Zapf J, Froesch ER. Insulin-like growth factors: studies in diabetics with and without retinopathy.N Engl J Med. 1983; 309: 527–530.PubMedCrossRefGoogle Scholar
  57. 57.
    Merimee TJ. Diabetic retinopathy. A synthesis of perspectives.N Engl J Med. 1990; 322: 978–983.PubMedCrossRefGoogle Scholar
  58. 58.
    Frank RN, Hoffman WH, Podgor MJ, Joondeph HC, Lewis RA, Margherio RR, Nachazel DP Jr, Weiss H, Christopherson KW, Cronin MA. Retinopathy in juvenile-onset diabetes of short duration.Ophthalmology. 1980; 87: 1–9.PubMedGoogle Scholar
  59. 59.
    Palmberg P, Smith M, Waltman S, Krupin T, Singer P, Burgess D, Wendtlant T, Achtenberg J, Cryer P, Santiago J, White N, Kilo C, Daughaday W. The natural history of retinopathy in insulin-dependent juvenile-onset diabetes.Ophthalmology. 1981; 88: 613–618.PubMedGoogle Scholar
  60. 60.
    Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL. Retinopathy in young-onset diabetic patients.Diabetes Care. 1985; 8: 311–315.PubMedCrossRefGoogle Scholar
  61. 61.
    Murphy RP, Nanda M, Plotnick L, Enger C, Vitale S, Patz A. The relationship of puberty to diabetic retinopathy.Arch Ophthalmol. 1990; 108: 215–218.PubMedGoogle Scholar
  62. 62.
    Kostraba JN, Dorman JS, Orchard TJ, Becker DJ, Ohki Y, Ellis D, Doft BH, Lobes LA, LaPorte RE, Drash AL. Contribution of diabetes duration before puberty to development of microvascular complications in IDDM subjects.Diabetes Care. 1989; 12: 686–693.PubMedCrossRefGoogle Scholar
  63. 63.
    Lundbaek K, Malmros R, Andersen HC, Rasmussen JH, Bruntse E, Madsen PH, Jensen VA. Hypophysectomy for diabetic retinopathy: a controlled clinical trial. In: Goldberg MF, Fine SL, eds.Symposium on the Treatment of Diabetic Retinopathy, Public Health Service Publication No. 1890. Washington, DC: U.S. Government Printing Office; 1969: 291–311.Google Scholar
  64. 64.
    Kohner EM, Hamilton AM, Joplin GF, Fraser TR. Florid diabetic retinopathy and its response to treatment by photocoagulation or pituitary ablation.Diabetes. 1976; 25: 104–110.PubMedCrossRefGoogle Scholar
  65. 65.
    Patz A . Studies on retinal neovascularization. The Friedenwald Lecture.Invest Ophthalmol Vis Sci. 1980; 19: 1133–1138.PubMedGoogle Scholar
  66. 66.
    Henkind P. Ocular neovascularization.Am J Ophthalmol. 1978; 85: 287–301.PubMedGoogle Scholar
  67. 67.
    Warburg OH.The metabolism of tumors, transl. by F. Dickens. New York: Richard R. Smith; 1931: 237–238, 322–324.Google Scholar
  68. 68.
    Imre G. Studies on the mechanism of retinal neovascularization: role of lactic acid.Br J Ophthalmol. 1964; 48: 75–82.PubMedCrossRefGoogle Scholar
  69. 69.
    Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in prefformed and newly formed blood vessels during tumor angiogenesis.Microvasc Res. 1977; 14: 53–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Kalebic T, Garbisa S, Glaser B, Liotta LA. Basement membrane collagen: degradation by migrating endothelial cells.Science. 1983; 221: 281–283.PubMedCrossRefGoogle Scholar
  71. 71.
    Gross JL, Moscatelli D, Jaffe EA, Rifkin DB. Plasminogen activator and collagenase production by cultured capillary endothelial cells.J Cell Biol. 1982; 95: 974–981.PubMedCrossRefGoogle Scholar
  72. 72.
    Liotta LA, Goldfarb RH, Brundage R, Siegal GP, Terranova V, Garbisa S. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membraneCancer Res. 1981; 41: 4629–4636.PubMedGoogle Scholar
  73. 73.
    Jerdan JA, Kristensen P, Maglione A, Glaser BM. New blood vessel formation is associated with urokinase-type plasminogen activator.Invest Ophthalmol Vis Sci. 1988; 29 (Suppl): 109.Google Scholar
  74. 74.
    Pandolfi M. Localization of fibrinolytic activity in the developing rat eye.Arch Ophthalmol. 1967; 78: 512–517.Google Scholar
  75. 75.
    Weiter JJ, Zuckerman R. The influence of the photoreceptor-RPE complex on the inner retina: an explanation for the beneficial effects of photocoagulation.Ophthalmology. 1980; 87: 1133–1139.PubMedGoogle Scholar
  76. 76.
    Glaser BM, Campochiaro PA, Davis J, Sato M. Retinal pigment epithelial cells release an inhibitor of neovascularization.Arch Ophthalmol. 1985; 103: 1870–1875.PubMedGoogle Scholar
  77. 77.
    Wong HC, Boulton M, McLeod D, Bayly M, Clark P, Marshall J. Retinal pigment epithelial cells in culture produce retinal vascular mitogens.Arch Ophthalmol. 1988; 106: 1439–1443.PubMedGoogle Scholar
  78. 78.
    Frank RN, Mancini MA. Presumed retinovitreal neovascularization in dystrophic retinas of spontaneously hypertensive rats.Invest Ophthalmol Vis Sci. 1986; 27: 346–355.PubMedGoogle Scholar
  79. 79.
    Frank RN, Das A, Weber ML. A model of subretinal neovascularization in the pigmented rat.Curr Eye Res. 1989; 8: 239–247.PubMedCrossRefGoogle Scholar
  80. 80.
    Henkind P, Gartner S. The relationship between retinal pigment epithelium and the choriocapillaris.Trans Ophthalmol Soc. 1983; 103: 444–447.Google Scholar
  81. 81.
    Ashton N. Oxygen and the growth and development of retinal vessels. In: Kimura SJ, Caygill WM, eds.Vascular complications of diabetes mellitus. St. Louis: CV Mosby; 1967: 3–32.Google Scholar
  82. 82.
    Patz A. The role of oxygen in retrolental fibroplasia.Trans Am Ophthalmol Soc. 1968; 66: 940–985.PubMedGoogle Scholar
  83. 83.
    Flower RW, Blake DA. Retrolental fibroplasia: evidence for a role of the prostaglandin cascade in the pathogenesis of oxygen-induced retinopathy in the newborn beagle.Pediatr Res. 1981; 15: 1293–1302.PubMedGoogle Scholar
  84. 84.
    Shabo AL, Maxwell DS. Experimental immunogenic proliferative retinopathy in monkeys.Am J Ophthalmol. 1977; 83: 471–480.PubMedGoogle Scholar
  85. 85.
    Weber ML, Mancini MA, Frank RN. Retinovitreal neovascularization in the Royal College of Surgeons rat.Curr Eye Res. 1989; 8: 61–74.PubMedCrossRefGoogle Scholar
  86. 86.
    Frank RN, Zhang NL, Das A, Miller T. Light exposure stimulates retinovitreal neovascularization in dystrophic RCS rats.Invest Ophthalmol Vis Sci. 1990; 31 (Suppl): 195.Google Scholar
  87. 87.
    Bellhorn RW, Bellhorn M, Friedman AH, Henkind P. Urethane-induced retinopathy in pigmented rats.Invest Ophthalmol Vis Sci. 1973; 12: 65–75.Google Scholar
  88. 88.
    Bellhorn RW, Burns MS, Benjamin JV. Retinal vessel abnormalities of phototoxic retinopathy in rats.Invest Ophthalmol Vis Sci. 1980; 19: 584–595.PubMedGoogle Scholar
  89. 89.
    Shiraki K, Burns MS. Neovascularization in urethane rat retinopathy demonstrated by thymidine labelling.Curr Eye Res. 1986; 5: 683–695.PubMedCrossRefGoogle Scholar
  90. 90.
    Ryan SJ. The development of an experimental model of subretinal neovascularization in disciform macular degeneration.Trans Am Ophthalmol Soc. 1979; 77: 707–745.PubMedGoogle Scholar
  91. 91.
    Archer DB, Gardiner TA. Experimental subretinal neovascularization.Trans Ophthalmol Soc. 1980; 100: 363–368.Google Scholar
  92. 92.
    Dobi ET, Puliafito CA, Destro M. A new model of experimental choroidal neovascularization in the rat.Arch Ophthalmol. 1989; 107: 264–269.PubMedGoogle Scholar
  93. 93.
    Pollack A, Heriot WJ, Henkind P. Cellular processes causing defects in Bruch’s membrane following krypton laser photocoagulation.Ophthalmology. 1986; 93: 1113–1119.PubMedGoogle Scholar
  94. 94.
    Baudouin C, Fredj-Reygrobellet D, Caruelle J-P, Barritault D, Gastaud P, Lapalus P. Acidic fibroblast growth factor distribution in normal human eye and possible implications in ocular pathogenesis.Ophthalmol Res. 1990; 22: 73–81.CrossRefGoogle Scholar
  95. 95.
    Fayein NA, Courtois Y, Jeanny JC. Ontogeny of basic fibroblast growth factor binding sites in mouse ocular tissues.Exp Cell Res. 1990; 188: 75–88.PubMedCrossRefGoogle Scholar
  96. 96.
    Hageman GS, Kirchoff-Rempe MA, Lewis GP, Fisher SK, Anderson DH. Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix.Proc Natl Acad Sci USA. 1991; 88: 6706–6710.PubMedCrossRefGoogle Scholar
  97. 97.
    Faktorovich EG, Steinberg RH, Yasumura D, Yamaai T, Nohno T, Matsuo N, Taniguchi S. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor.Nature. 1990; 347: 83–86.PubMedCrossRefGoogle Scholar
  98. 98.
    Noji S, Matsuo T, Koyama E, Yamaai T, Nohno T, Matsuo N, Taniguchi S. Expression pattern of acidic and basic fibroblast growth factor genes in adult rat eyes.Biochem Biophys Res Commun. 1990; 168: 343–349.PubMedCrossRefGoogle Scholar
  99. 99.
    Sivalingam A, Kenney J, Brown GC, Donoso L. Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy.Arch Ophthalmol. 1990; 108: 869–872.PubMedGoogle Scholar
  100. 100.
    Hanneken A, De Juan E Jr, Lutty GA, Fox GM, Schiffer S, Hjelmeland LM. Altered distribution of basic fibroblast growth factor in diabetic retinopathy.Arch Ophthalmol. 1991; 109: 1005–1011.PubMedGoogle Scholar
  101. 101.
    Lutty G, Ikeda K, Chandler C, McLeod DS. Immunohistochemical localization of transforming growth factor beta in human photoreceptors.Curr Eye Res. 1991; 10: 61–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Robert N. Frank
  • Laura B. Sotolongo

There are no affiliations available

Personalised recommendations