Abstract

Neutrophils represent a mobile frontline defense against microbial pathogens. By way of the circulatory system, the neutrophil can gain access to virtually any tissue. In addition to the circulating neutrophils, which account for more than half of the white blood cells, new recruits are readily available from the bone marrow. Neutrophils have a short life span of approximately 2–3 days. It is estimated that 80 million neutrophils are generated each minute. Neutrophils which localize to a site of infection become activated to kill or ingest the foreign pathogen in an antigen-nonspecific manner. A misguided neutrophil can cause great damage to healthy tissues. Thus two events in the neutrophil’s short life must be tightly regulated: the site of neutrophil localization and the site of neutrophil activation. Adhesion molecules play a crucial role in neutrophil localization. Three major familes of adhesion molecules involved in neutrophil-endothelial cell interactions have been defined: the leukocyte integrins (LFA-1, Mac-1, and p150,95), the intercellular adhesion molecules (ICAM-1,-2,-3), and the selectins (L-selectin, E-selectin, and P-selectin). The leukocyte integrins are crucial in leukocyte localization, as evidenced by patients who are genetically deficient in the expression of all three molecules (reviewed in 1,2). These leukocyte adhesion deficiency (LAD) patients are highly suceptible to severe bacterial infections.

Keywords

Migration Carbohydrate Interferon Histamine Integrin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D.C., and T.A. Springer. 1987. Leukocyte adhesion deficiency: An inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Ann. Rev. Med. 38:175.PubMedCrossRefGoogle Scholar
  2. 2.
    Kishimoto, T.K., and D.C. Anderson. 1992. The role of integrins in inflammation. In Inflammation: Basic Principals and Clinical Correlates. 2nd ed. J.I. Gallin, I.M. Goldstein, and R. Snyderman, eds. Raven Press, New York, p. in press.Google Scholar
  3. 3.
    Rothlein, R., M.L. Dustin, S.D. Marlin, and T.A. Springer. 1986. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 137:1270.PubMedGoogle Scholar
  4. 4.
    Dustin, M.L., R. Rothlein, A.K. Bhan, C.A. Dinarello, and T.A. Springer. 1986. Induction by IL-1 and interferon, tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 137:245.PubMedGoogle Scholar
  5. 5.
    Marlin, S.D., and T.A. Springer. 1987. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51:813.PubMedCrossRefGoogle Scholar
  6. 6.
    Smith, C.W., S.D. Marlin, R. Rothlein, C. Toman, and D.C. Anderson. 1989. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J. Clin. Invest. 83:2008.PubMedCrossRefGoogle Scholar
  7. 7.
    Diamond, M.S., D.E. Staunton, S.D. Marlin, and T.A. Springer. 1991. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65:961.PubMedCrossRefGoogle Scholar
  8. 8.
    Osborn, L., C. Hession, R. Tizard, C. Vassallo, S. Luhowskyj, G. Chi-Rosso, and R. Lobb. 1989. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203.PubMedCrossRefGoogle Scholar
  9. 9.
    Kishimoto, T.K., R.S. Larson, A.L. Corbi, M.L. Dustin, D.E. Staunton, and T.A. Springer. 1989. Leukocyte Integrins. In Leukocyte Adhesion Molecules. T.A. Springer, D.C. Anderson, A.S. Rosenthal, and R. Rothlein, eds. Springer-Verlag, New York, p. 7.Google Scholar
  10. 10.
    Arnaout, M.A. 1990. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75:1037.PubMedGoogle Scholar
  11. 11.
    Springer, T.A. 1990. Adhesion receptors of the immune system. Nature 346:425.PubMedCrossRefGoogle Scholar
  12. 12.
    Lasky, L.A., M.S. Singer, T.A. Yednock, D. Dowbenko, C. Fennie, H. Rodriguez, T. Nguyen, S. Stachel, and S.D. Rosen. 1989. Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell 56:1045.PubMedCrossRefGoogle Scholar
  13. 13.
    Siegelman, M.H., M. Van de Rijn, and I.L. Weissman. 1989. Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains. Science 243:1165.PubMedCrossRefGoogle Scholar
  14. 14.
    Bevilacqua, M.P., S. Stengelin, M.A. Gimbrone, and B. Seed. 1989. Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160.PubMedCrossRefGoogle Scholar
  15. 15.
    Johnston, G.I., R.G. Cook, and R.P. McEver. 1989. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation. Cell 56:1033.PubMedCrossRefGoogle Scholar
  16. 16.
    Phillips, M.L., E. Nudelman, F.C.A. Gaeta, M. Perez, A.K. Singhai, S. Hakomori, and J.C. Paulson. 1990. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250:1130.PubMedCrossRefGoogle Scholar
  17. 17.
    Walz, G., A. Aruffo, W. Kolanus, M.P. Bevilacqua, and B. Seed. 1990. Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 250:1132.PubMedCrossRefGoogle Scholar
  18. 18.
    Lowe, J.B., L.M. Stoolman, R.P. Nair, R.D. Larsen, T.L. Berhend, and R.M. Marks. 1990. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 63:475.PubMedCrossRefGoogle Scholar
  19. 19.
    Goelz, S.E., C. Hession, D. Goff, B. Griffiths, R. Tizard, B. Newman, G. Chi-Rosso, and R. Lobb. 1990. ELFT: A gene that directs the expression of an ELAM-1 ligand. Cell 63:1349.PubMedCrossRefGoogle Scholar
  20. 20.
    Berg, E.L., M.K. Robinson, O. Mansson, E.C. Butcher, and J.L. Magnani. 1991. A carbohydrate domain common to both sialyl Lea and sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J. Biol. Chem. 266:14869.PubMedGoogle Scholar
  21. 21.
    Larsen, E., T. Palabrica, S. Sajer, G.E. Gilbert, D.D. Wagner, B.C. Furie, and B. Furie. 1990. PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III(CD15). Cell 63:467.PubMedCrossRefGoogle Scholar
  22. 22.
    Polley, M.J., M.L. Phillips, E. Wayner, E. Nudelman, A.K. Singhai, S. Hakomori, and J.C. Paulson. 1991. CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc. Natl Acad. Sci. USA 88:6224.PubMedCrossRefGoogle Scholar
  23. 23.
    Corral, L., M.S. Singer, B.A. Macher, and S.D. Rosen. 1990. Requirement for sialic acid on neutrophils in a GMP-140 (PADGEM) mediated adhesive interaction with activated platelets. Biochem. Biophys. Res. Commun 172:1349.PubMedCrossRefGoogle Scholar
  24. 24.
    Moore, K.L., A. Varki, and R.P. McEver. 1991. GMP-140 binds to a glycoprotein receptor on human neutrophils: evidence for a lectin-like interaction. J. Cell Biol. 112:491.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith, C.W., S.D. Marlin, R. Rothlein, M.B. Lawrence, L.V. McIntire, and D.C. Anderson. 1989. Role of ICAM-1 in the adherence of human neutrophils to human endothelial cells in vitro. In Leukocyte Adhesion Molecules. T.A. Springer, D.C. Anderson, A.S. Rosenthal, and R. Rothlein, eds. Springer-Verlag, New York, p. 170.Google Scholar
  26. 26.
    Jutila, M.A., L. Rott, E.L. Berg, and E.G. Butcher. 1989. Function and regulation of the neutrophil MEL-14 antigen in vivo: Comparison with LFA-1 and Mac-1. J. Immunol. 143:3318.PubMedGoogle Scholar
  27. 27.
    Kishimoto, T.K., M.A. Jutila, E.L. Berg, and E.C. Butcher. 1989. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemo-tactic factors. Science 245:1238.PubMedCrossRefGoogle Scholar
  28. 28.
    Bevilacqua, M., E. Butcher, B. Furie, M. Gallatin, M. Gimbrone, J. Harlan, K. Kishimoto, L. Lasky, R. McEver, J. Paulson, S. Rosen, B. Seed, M. Siegelman, T. Springer, L. Stoolman, T. Tedder, A. Varki, D. Wagner, I. Weissman, and G. Zimmerman. 1991. Selectins: A family of adhesion receptors. Cell 67:233.PubMedCrossRefGoogle Scholar
  29. 29.
    Gallatin, W.M., I.L. Weissman, and E.C. Butcher. 1983. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304:30.PubMedCrossRefGoogle Scholar
  30. 30.
    Siegelman, M.H., I.C. Cheng, I.L. Weissman, and E.K. Wakeland. 1990. The mouse lymph node homing receptor is identical with the lymphocyte cell surface marker Ly-22: role of the EGF domain in endothelial binding. Cell 61:611.PubMedCrossRefGoogle Scholar
  31. 31.
    Tedder, T.F., A.C. Penta, H.B. Levine, and A.S. Freedman. 1990. Expression of the human leukocyte adhesion molecule, LAM-1. Identity with the TQ1 and Leu-8 differentiation antigens. J. Immunol. 144:532.PubMedGoogle Scholar
  32. 32.
    Camerini, D., S.P. James, I. Stamenkovic, and B. Seed. 1989. Leu-8/TQ-1 is the human equivalent of the Mel-14 lymph node homing receptor. Nature 342:78.PubMedCrossRefGoogle Scholar
  33. 33.
    Pober, J.S., M.P. Bevilacqua, D.L. Mendrick, L.A. Lapierre, W. Fiers, and M.A. Gimbrone Jr. 1986. Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J. Immunol. 136:1680.PubMedGoogle Scholar
  34. 34.
    Bevilacqua, M.P., J.S. Pober, D.L. Mendrick, R.S. Cotran, and M.A. Gimbrone. 1987. Identification of an inducible endothelial-leukocyte adhesion molecule, E-LAM 1. Proc. Natl. Acad. Sci. USA 84:9238.PubMedCrossRefGoogle Scholar
  35. 35.
    McEver, R.P., and M.N. Martin. 1984. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J. Biol. Chem. 259:9799.PubMedGoogle Scholar
  36. 36.
    Stenberg, P.E., R.P. McEver, M.A. Shuman, Y.V. Jacques, and D.F. Bainton. 1985. A platelet alpha granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J. Cell Biol. 101:880.PubMedCrossRefGoogle Scholar
  37. 37.
    Hsu-Lin, S.-C., C.L. Berman, B.C. Furie, D. August, and B. Furie. 1984. A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. J. Biol. Chem. 259:9121.PubMedGoogle Scholar
  38. 38.
    Berman, C.L., E.L. Yeo, J.D. Wencel-Drake, B.C. Furie, M.H. Ginsberg, and B. Furie. 1986. A platelet alpha granule membrane protein that is associated with the plasma membrane after activation. J. Clin. Invest. 78:130.PubMedCrossRefGoogle Scholar
  39. 39.
    Butcher, E.G. 1986. The regulation of lymphocyte traffic. Curr. Topics Microbiol. Immunol. 128:85.Google Scholar
  40. 40.
    Yednock, T.A., and S.D. Rosen. 1989. Lymphocyte homing. Adv. Immunol. 44:313.PubMedCrossRefGoogle Scholar
  41. 41.
    Stamper, H.B., Jr., and J.J. Woodruff. 1976. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J. Exp. Med. 144:828.PubMedCrossRefGoogle Scholar
  42. 42.
    Rosen, S.D., M. Singer, T.A. Yednock, and L.M. Stoolman. 1985. Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 228:1005.PubMedCrossRefGoogle Scholar
  43. 43.
    True, D.D., M.S. Singer, L.A. Lasky, and S.D. Rosen. 1990. Requirement for sialic acid on the endothelial ligand of a lymphocyte homing receptor. J. Cell Biol. 111:2757.PubMedCrossRefGoogle Scholar
  44. 44.
    Rosen, S.D., S.I. Chi, D.D. True, M.S. Singer, and T.A. Yednock. 1989. Intravenously injected sialidase inactivates attachment sites for lymphocytes on high endothelial venules. J. Immunol. 142:1895.PubMedGoogle Scholar
  45. 45.
    Yednock, T.A., L.M. Stoolman, and S.D. Rosen. 1987. Phosphomanosyl-derivatized beads detect a receptor involved in lymphocyte homing. J. Cell. Biol. 104:713.PubMedCrossRefGoogle Scholar
  46. 46.
    Stoolman, L.M., T. Tenforde, and S.D. Rosen. 1984. Phosphomanosyl receptors may participate in the adhesive interaction between lymphocytes and high endothelial venules. J. Cell Biol. 99:1535.PubMedCrossRefGoogle Scholar
  47. 47.
    Yednock, T.A., E.G. Butcher, L.M. Stoolman, and S.D. Rosen. 1987. Receptors involved in lymphocyte homing: Relationship between a carbohydrate-binding receptor and the MEL-14 antigen. J. Cell. Biol. 104:725.PubMedCrossRefGoogle Scholar
  48. 48.
    Geoffroy, J.S., and S.D. Rosen. 1989. Demonstration that a lectin-like receptor (gp90MEL) directly mediates adhesion of lymphocytes to high endothelial venules of lymph nodes. J. Cell Biol. 109:2463.PubMedCrossRefGoogle Scholar
  49. 49.
    Imai, Y., D.D. True, M.S. Singer, and S.D. Rosen. 1990. Direct demonstration of the lectin activity of gp90MEL, a lymphocyte homing receptor. J. Cell Biol. 111:1225.PubMedCrossRefGoogle Scholar
  50. 50.
    Imai, Y., M.S. Singer, C. Fennie, L.A. Lasky, and S.D. Rosen. 1991. Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor. J. Cell Biol. 113:1213.PubMedCrossRefGoogle Scholar
  51. 51.
    Lewinsohn, D.M., R.F. Bargatze, and E.G. Butcher. 1987. Leukocyte-endothelial cell recognition: Evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes. J. Immunol. 138:4313.PubMedGoogle Scholar
  52. 52.
    Watson, S.R., C. Fennie, and L.A. Lasky. 1991. Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor-IgG chimaera. Nature 349:164.PubMedCrossRefGoogle Scholar
  53. 53.
    Gimbrone, M.A. Jr. 1976. Culture of vascular endothelium. Prog. Hemost. Thromb. 3:1.PubMedGoogle Scholar
  54. 54.
    Bevilacqua, M.P., J.S. Pober, M.E. Wheeler, R.S. Cotran, and M.A. Gimbrone Jr. 1985. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J. Clin. Invest. 76:2003.PubMedCrossRefGoogle Scholar
  55. 55.
    Bevilacqua, M.P., J.S. Pober, G.R. Majeau, R.S. Cotran, and M.A. Jr. Gimbrone. 1984. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J. Exp. Med. 160:618.PubMedCrossRefGoogle Scholar
  56. 56.
    Pober, J.S., and M.A. Gimbrone, Jr. 1982. Expression of la-like antigens by human vascular endothelial cells is inducible in vitro: demonstration by monoclonal antibody binding and immunoprecipitation. Proc. Natl. Acad. Sci. USA 79:6641.PubMedCrossRefGoogle Scholar
  57. 57.
    Luscinskas, F.W., A.F. Brock, M.A. Arnaout, and M.A. Gimbrone. 1989. Endothelial-leukocyte adhesion molecule-1-dependent and leukocyte (CD11/CD18)-dependent mechanisms contribute to polymorphonuclear leukocyte adhesion to cytokine-activated human vascular endothelium. J. Immunol. 142:2257.PubMedGoogle Scholar
  58. 58.
    Cotran, R.S., M.A. Gimbrone, M.P. Bevilacqua, D.L. Mendrick, and J.S. Pober. 1986. Induction and detection of a human endothelial activation antigen in vivo. J. Exp. Med. 164:661.PubMedCrossRefGoogle Scholar
  59. 59.
    Munro, J.M., J.S. Pober, and R.S. Cotran. 1991. Recruitment of neutrophils in the local endotoxin response: Association with de novo endothelial expression of endothelial leukocyte adhesion molecule-1. Lab. Invest. 64:295.PubMedGoogle Scholar
  60. 60.
    Redl, H., H.P. Dinges, W.A. Buurman, C.J. Van der Linden, J.S. Pober, R.S. Cotran, and G. Schlag. 1991. Expression of endothelial leukocyte adhesion molecule-1 in septic but not traumatic/hypovolemic shock in the baboon. Am. J. Pathol. 139:461.PubMedGoogle Scholar
  61. 61.
    Munro, J.M., J.S. Pober, and R.S. Cotran. 1989. Tumor necrosis factor and interferon-gamma induce distinct patterns of endothelial activation and leukocyte accumulation in skin of Papio anubis. Am. J. Pathol. 135:121.PubMedGoogle Scholar
  62. 62.
    Leung, D.Y.M., J.S. Pober, and R.S. Cotran. 1991. Expression of endothelial-leukocyte adhesion molecule-1 in elicited late phase allergic reactions. J. Clin. Invest. 87:1805.PubMedCrossRefGoogle Scholar
  63. 63.
    Gundel, R.H., C.D. Wegner, C.A. Torcellini, C.C. Clarke, N. Haynes, R. Rothlein, C. W. Smith, and L.G. Letts. 1991. Endothelial leukocyte adhesion molecule-1 mediates antigen-induced acute airway inflammation and late-phase airway obstruction in monkeys. J. Clin. Invest. 88:1407.PubMedCrossRefGoogle Scholar
  64. 64.
    Mulligan, M.S., J. Varani, M.K. Dame, C.L. Lane, C.W. Smith, D.C. Anderson, and P.A. Ward. 1991. Role of endothelial-leukocyte adhesion molecule 1 (ELAM-1) in neutrophil-mediated lung injury in rats. J. Clin. Invest. 88:1396.PubMedCrossRefGoogle Scholar
  65. 65.
    Koch, A.E., J.C. Burrows, G.K. Haines, T.M. Carlos, J.M. Harlan, and S.J. Leibovich. 1991. Immunolocalization of endothelial and leukocyte adhesion molecules in human rheumatoid and osteoarthritic synovial tissues. Lab. Invest. 64:313.PubMedGoogle Scholar
  66. 66.
    Picker, L.J., T.K. Kishimoto, C.W. Smith, R.A. Warnock, and E.C. Butcher. 1991. ELAM-1 is an adhesion molecule for skin-homing T cells. Nature 349:796.PubMedCrossRefGoogle Scholar
  67. 67.
    McEver, R.P., J.H. Beckstead, K.L. Moore, C.L. Marshall, and D.F. Bainton. 1989. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J. Clin. Invest. 84:92.CrossRefGoogle Scholar
  68. 68.
    Bonfanti, R., B.C. Furie, B. Furie, and D.D. Wagner. 1989. PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood 73:1109. PubMedGoogle Scholar
  69. 69.
    Hattori, R., K.K. Hamilton, R.D. Fugate, R.P. McEver, and P.J. Sims. 1989. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein (GMP-140). J. Biol. Chem. 264:7768.PubMedGoogle Scholar
  70. 70.
    Hamburger, S.A., and R.P. McEver. 1990. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 75:550.PubMedGoogle Scholar
  71. 71.
    Larsen, E., A. Celi, G.E. Gilbert, B.C. Furie, J.K. Erban, R. Bonfanti, D.D. Wagner, and B. Furie. 1989. PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305.PubMedCrossRefGoogle Scholar
  72. 72.
    Geng, J.-G., M.P. Bevilacqua, K.L. Moore, T.M. McIntyre, S.M. Prescott, J.M. Kim, G.A. Bliss, G.A. Zimmerman, and R.P. McEver. 1990. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343:757.PubMedCrossRefGoogle Scholar
  73. 73.
    Patel, K.D., G.A. Zimmerman, S.M. Prescott, R.P. McEver, and T.M. McIntyre. 1991. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J. Cell Biol. 112:749.PubMedCrossRefGoogle Scholar
  74. 74.
    Lorant, D.E., K.D. Patel, T.M. McIntyre, R.P. McEver, S.M. Prescott, and G.A. Zimmerman. 1991. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: A juxtacrine system for adhesion and activation of neutrophils. J. Cell Biol. 115:223.PubMedCrossRefGoogle Scholar
  75. 75.
    Palabrica, T.M., B.C. Furie, M.A. Konstam, M.J. Aronovitz, R. Connolly, B.A. Brockway, K.L. Ramberg, and B. Furie. 1989. Thrombus imaging in a primate model with antibodies specific for an external membrane protein of activated platelets. Proc. Natl. Acad. Sci. USA 86:1036.PubMedCrossRefGoogle Scholar
  76. 76.
    Siegelman, M.H., and I.L. Weissman. 1989. Human homologue of mouse lymph node homing receptor: Evolutionary conservation at tandem cell interaction domains. Proc. Natl. Acad. Sci. USA 86:5562.PubMedCrossRefGoogle Scholar
  77. 77.
    Tedder, T.F., C.M. Isaacs, T.J. Ernst, G.D. Demetri, D.A. Adler, and C.M. Disteche. 1989. Isolation and chromosomal localization of cDNAs encoding a novel human lymphocyte cell surface molecule, LAM-1. Homology with the mouse lymphocyte homing receptor and other human adhesion proteins J. Exp. Med. 170:123.PubMedCrossRefGoogle Scholar
  78. 78.
    Bowen, B.R., T. Nguyen, and L.A. Lasky. 1989. Characterization of a human homologue of the murine peripheral lymph node homing receptor. J. Cell Biol. 109:421.PubMedCrossRefGoogle Scholar
  79. 79.
    Drickamer, K. 1988. Two distinct classes of carbohydrate-recognition domains in animal lectins J. Biol. Chem. 263:9557.PubMedGoogle Scholar
  80. 80.
    Bowen, B.R., C Fennie, and L.A. Lasky. 1990. The Mel-14 antibody binds to the lectin domain of the murine peripheral lymph node homing receptor. J. Cell Biol. 110:147.PubMedCrossRefGoogle Scholar
  81. 81.
    Kansas, G.S., O. Spertini, L.M. Stoolman, and T.F. Tedder. 1991. Molecular mapping of functional domains of the leukocyte receptor for endothelium, LAM-1. J. Cell Biol. 114:351.PubMedCrossRefGoogle Scholar
  82. 82.
    Watson, S.R., Y. Imai. C. Fennie, J. Geoffrey, M. Singer, S.D. Rosen, and L.A. Lasky. 1991. The complement binding-like domains of the murine homing receptor facilitate lectin activity. J. Cell Biol 115:235.PubMedCrossRefGoogle Scholar
  83. 83.
    Berg, M., and S.P. James. 1990. Human neutrophils release the Leu-8 lymph node homing receptor during cell activation. Blood 76:2381.PubMedGoogle Scholar
  84. 84.
    Picker, L.J., R.A. Warnock, A.R. Burns, C.M. Doerschuk, E.L. Berg, and E.C. Butcher. 1991. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66:921.PubMedCrossRefGoogle Scholar
  85. 85.
    St. John, T.W.M. Gallatin, M. Siegelman, H.T. Smith, V.A. Fried, and I.L. Weissman. 1986. Expression cloning of a lymphocyte homing receptor cDNA: Ubiquitin is the reactive species. Science 231:845.CrossRefGoogle Scholar
  86. 86.
    Siegelman, M., M.W. Bond, W.M. Gallatin, T. St. John, H.T. Smith, V.A. Fried, and I.L. Weissman. 1986. Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein. Science 231:823.PubMedCrossRefGoogle Scholar
  87. 87.
    Johnston, G.I., G.A. Bliss, P.J. Newman, and R.P. McEver. 1990. Structure of the human gene encoding granule membrane protein-140, a member of the selectin family of adhesion receptors for leukocytes. J. Biol. Chem. 265:21381.PubMedGoogle Scholar
  88. 88.
    Tedder, T.F., C.M. Isaacs, T.J. Ernst, G.D. Demetri, D.A. Adler, and C.M. Disteche. 1989. Isolation and chromosomal localization of cDNAs encoding a novel human lymphocyte cell surface molecule, LAM-1. J. Exp. Med. 170:123.PubMedCrossRefGoogle Scholar
  89. 89.
    Collins, T., A. Williams, G.I. Johnston, J. Kim, R. Eddy, T. Shows, M.A. Gimbrone, and M.P. Bevilacqua. 1991. Structure and chromosomal location of the gene for endothelial-leukocyte adhesion molecule-1. J. Biol. Chem. 266:2466.PubMedGoogle Scholar
  90. 90.
    Watson, M.L., S.F. Kingsmore, G.I. Johnston, M.H. Siegelman, M.M. Le Beau, R.S. Lemons, N.S. Bora, T.A. Howard, I.L. Weissman, R.P. McEver, and M.F. Seldin. 1990. Genomic organization of the selectin family of leukocyte adhesion molecules on human and mouse chromosome 1. J. Exp. Med. 172:263.PubMedCrossRefGoogle Scholar
  91. 91.
    Hallmann, R., M.A. Jutila, C.W. Smith, D.C Anderson, T.K. Kishimoto, and E.C. Butcher. 1991. The peripheral lymph node homing receptor, LECAM-1, is involved in CD18-independent adhesion of neutrophils to endothelium. Biochem. Biophys. Res. Commun. 174:236.PubMedCrossRefGoogle Scholar
  92. 92.
    Spertini, O., F.W. Luscinskas, G.S. Kansas, J.M. Munro, J.D. Griffin, M.A. Gimbrone, Jr., and T.F. Tedder. 1991. Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J. Immunol. 147:2565.PubMedGoogle Scholar
  93. 93.
    Smith, C.W., T.K. Kishimoto, O. Abbassi, B.J. Hughes, R. Rothlein, L.V. McIntire, E.C. Butcher, and D.C. Anderson. 1991. Chemotactic factors regulate lectin adhesion molecule-1 (LECAM-l)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J. Clin. Invest. 87:609.PubMedCrossRefGoogle Scholar
  94. 94.
    Griffin, J.D., O. Spertini, T.J. Ernst, M.P. Belvin, H.B. Levine, Y. Kanakura, and T.F. Tedder. 1990. Granulocyte-macrophage colony-stimulating factor and other cytokines regulate surface expression of the leukocyte adhesion molecule-1 on human neutrophils, monocytes, and their precursors. J. Immunol. 145:576.PubMedGoogle Scholar
  95. 95.
    Jung, T.M., W.M. Gallatin, I.L. Weissman, and M.O. Dailey. 1988. Down-regulation of homing receptors after T cell activation. J. Immunol 141:4110.PubMedGoogle Scholar
  96. 96.
    Jutila, M.A., T.K. Kishimoto, and E.G. Butcher. 1990. Regulation and lectin activity of the human neutrophil peripheral lymph node homing receptor. Blood 76:178.PubMedGoogle Scholar
  97. 97.
    Kishimoto, T.K., M.A. Jutila, and E.G. Butcher. 1990. Identification of a human peripheral lymph node homing receptor: A rapidly down-regulated adhesion molecule. Proc. Natl. Acad. Sci. USA 87:2244.PubMedCrossRefGoogle Scholar
  98. 98.
    Jung, T.M., and M.O. Dailey. 1988. Reversibility of loss of homing receptor expression following activation. Adv. Exp. Med. Biol. 237:519.PubMedGoogle Scholar
  99. 99.
    Jutila, M.A., T.K. Kishimoto, and M. Finken. 1991. Low-dose chymotrypsin treatment inhibits neutrophil migration into sites of inflammation in vivo: Effects on Mac-1 and MEL-14 adhesion protein expression and function. Cell. Immunol. 132:201.PubMedCrossRefGoogle Scholar
  100. 100.
    Spertini, O., G.S. Kansas, J.M. Munro, J.D. Griffin, and T.F. Tedder. 1991. Regulation of leukocyte migration by activation of the leukocyte adhesion molecule-1 (LAM-1) selectin. Nature 349:691.PubMedCrossRefGoogle Scholar
  101. 101.
    Dustin, M.L., and T.A. Springer. 1989. T cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341:619.PubMedCrossRefGoogle Scholar
  102. 102.
    Pober, J.S., M.A. Gimbrone Jr., L.A. Lapierre, D.L. Mendrick, W. Fiers, R. Rothlein, and T.A. Springer. 1986. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor and immune interferon. J. Immunol. 137:1893.PubMedGoogle Scholar
  103. 103.
    Norris, P., R.N. Poston, D.S. Thomas, M. Thornhill, J. Hawk, and D.O. Haskard. 1991. The expression of endothelial leukocyte adhesion molecule-1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in experimental cutaneous inflammation: A comparison of ultraviolet B erythema and delayed hypersensitivity. J. Invest. Dermatol. 96:763.PubMedCrossRefGoogle Scholar
  104. 104.
    Shimizu, Y., S. Shaw, N. Graber, T.V. Gopal, K. J. Horgan, G. A. Van Seventer, and W. Newman. 1991. Activation-independent binding of human memory T cells to adhesion molecule ELAM-1. Nature 349:799.PubMedCrossRefGoogle Scholar
  105. 105.
    Streeter, P.R., B.T. Rouse, and E.C. Butcher. 1988. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107:1853.PubMedCrossRefGoogle Scholar
  106. 106.
    Kishimoto, T.K., R.A. Warnock, M.A. Jutila, E.C. Butcher, C. Lane, D.C. Anderson, and C.W. Smith. 1991. Antibodies against human neutrophil LECAM-1 (LAM-l/Leu-8/DREG-56 antigen) and endothelial cell ELAM-1 inhibit a common CD18-independent adhesion pathway in vitro. Blood 78:805.PubMedGoogle Scholar
  107. 107.
    Von Andrian, U.H., J.D. Chambers, L.M. McEvoy, R.F. Bargatze, K.-E. Arfors, and E.C. Butcher. 1991. Two-step model of leukocyte-endothelial cell interaction in inflammation: Distinct roles for LECAM-1 and the leukocyte ft integrins in vivo. Proc. Natl. Acad. Sci. USA 88:7538.CrossRefGoogle Scholar
  108. 108.
    Ley, K., P. Gaehtgens, C. Fennie, M.S. Singer, L.A. Lasky, and S.D. Rosen. 1991. Lectin-like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo. Blood 77:2553.PubMedGoogle Scholar
  109. 109.
    Lowe, J.B., L.M. Stoolman, R.P. Nair, R.D. Larsen, T.L. Behrend, and R.M. Marks. 1991. A transfected human fucosyltransferase cDNA deter-mines biosynthesis of oligosaccharide ligand(s) for endothelial-leukocyte adhesion molecule I. Biochem. Soc. Trans. 19:649.PubMedGoogle Scholar
  110. 110.
    Tiemeyer, M., S.J. Swiedler, M. Ishihara, M. Moreland, H. Schweingruber, P. Hirtzer, and B.K. Brandley. 1991. Carbohydrate ligands for endothelial-leukocyte adhesion molecule-1. Proc. Natl. Acad. Sci. USA 88:1138.PubMedCrossRefGoogle Scholar
  111. 111.
    Tyrrell, D., P. James, N. Rao, C. Foxall, S. Abbas, F. Dasgupta, M. Nashed, A. Hasegawa, M. Kiso, D. Asa, J. Kidd, and B.K. Brandley. 1991. Structural requirements for the carbohydrate ligand of E-selectin. Proc. Natl. Acad. Sci. USA 88:10372.PubMedCrossRefGoogle Scholar
  112. 112.
    Aruffo, A., W. Kolanus, G. Walz, P. Fredman, and B. Seed. 1991. CD62/P-selectin recognition of myeloid and tumor cell sulfatides. Cell 67:35.PubMedCrossRefGoogle Scholar
  113. 113.
    Kishimoto, T.K. 1991. A dynamic model for neutrophil localization to inflammatory sites. J. NIH Res. 3:75.Google Scholar
  114. 114.
    Butcher, E.C. 1991. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 67:1033.PubMedCrossRefGoogle Scholar
  115. 115.
    Lawrence, M.B., L.V. McIntire, and S.G. Eskin. 1987. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 70:1284.PubMedGoogle Scholar
  116. 116.
    Lawrence, M.B., C.W. Smith, S.G. Eskin, and L.V. McIntire. 1988. Effect of venous shear stress on CD18-mediated neutrophil adhesion to culture endothelium. Blood 75:227.Google Scholar
  117. 117.
    Arfors, K.-E., C. Lundberg, L. Lindbom, K. Lundberg, P.G. Beatty, and J.M. Harlan. 1987. A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear accumulation and plasma leakage in vivo. Blood 69:338.PubMedGoogle Scholar
  118. 118.
    Anderson, D.C., O. Abbassi, T.K. Kishimoto, J.M. Koenig, L.V. McIntire, and C.W. Smith. 1991. Diminished lectin-, epidermal growth factor-, complement binding domain-cell adhesion molecule-1 on neonatal neutrophils underlies their impaired CD18-independent adhesion to endothelial cells in vitro. J. Immunol. 146:3372.PubMedGoogle Scholar
  119. 119.
    Abbassi, O., C.L. Lane, S. Krater, T.K. Kishimoto, D.C. Anderson, L.V. McIntire, and C.W. Smith. 1991. Canine neutrophil margination mediated by lectin adhesion molecule-1 in vitro. J. Immunol. 147:2107.PubMedGoogle Scholar
  120. 120.
    Lawrence, M.B., and T.A. Springer. 1991. Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 65:1.CrossRefGoogle Scholar
  121. 121.
    Furie, M.B., M.CA. Tancinco, and C.W. Smith. 1991. Monoclonal clonal antibodies to leukocyte integrins CD 11 a/CD18 and CD lib/CD18 or intercellular adhesion molecule-1 inhibit chemoattractant-stimulated neutrophil transendothelial migration in vitro. Blood 78:2089.PubMedGoogle Scholar
  122. 122.
    Furie, M.B., M.J. Burns, M.C.A. Tancinco, C.D. Benjamin, and R.R. Lobb. 1992. Endothelial-leukocyte adhesion molecule-1 is not required for the migration of neutrophils across ïl-1-stimulated endothelium in vitro. J. Immunol. In press.Google Scholar
  123. 123.
    Smith, C.W., R. Rothlein, B.J. Hughes, M.M. Mariscalco, F.C Schmalstieg, and D.C Anderson. 1988. Recognition of an endothelial determinant for CD18-dependent neutrophil adherence and transendothelial migration. J. Clin. Invest. 82:1746.PubMedCrossRefGoogle Scholar
  124. 124.
    Luscinskas, F.W., M.I. Cybulsky, J.-M. Kiely, C.S. Peckins, V.M. Davis, and M.A. Gimbrone Jr. 1991. Cytokine-activated human endothelial mono-layers support enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1. J. Immunol 146:1617.PubMedGoogle Scholar
  125. 125.
    Dobrina, A., T.M. Carlos, B.R. Schwartz, P.G. Beatty, H.D. Ochs, and J.M. Harlan. 1990. Phorbol ester causes down-regulation of CD11/CD18-independent neutrophil adherence to endothelium. Immunology 69:429.PubMedGoogle Scholar
  126. 126.
    Huber, A.R., S.L. Kunkel, R.F. Todd, and S.J. Weiss. 1991. Regulation of transendothelial neutrophil migration by endogenous 11–8. Science 254:99.PubMedCrossRefGoogle Scholar
  127. 127.
    Lo, S.K., S. Lee, R.A. Ramos, R. Lobb, M. Rosa, G. Chi-Rosso, and S.D. Wright. 1991. Endothelial-leukocyte adhesion molecule-1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1, alpha M beta 2) on human neutrophils. J. Exp. Med. 173:1493.PubMedCrossRefGoogle Scholar
  128. 128.
    Zimmerman, G.A., T.M. McIntyre, M. Mehra, and S.M. Prescott. 1990. Endothelial cell-associated platelet-activating factor: A novel mechanism for signalling intercellular adhesion. J. Cell Biol. 110:529.PubMedCrossRefGoogle Scholar
  129. 129.
    Zimmerman, G.A., and T.M. McIntyre. 1988. Neutrophil adherence to human endothelium in vitro occurs by CDw18 (Mol, Mac-1/LFA-1/gp150, 95) glycoprotein-dependent and independent mechanisms. J. Clin. Invest. 81:531.PubMedCrossRefGoogle Scholar
  130. 130.
    Zimmerman, G.A., T.M. McIntyre, and S.M. Prescott. 1985. Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro. J. Clin. Invest. 76:2235.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Takashi Kei Kishimoto

There are no affiliations available

Personalised recommendations