Class 1, 2, and 3 Scattering

  • James F. Greenleaf
  • Chandra M. Sehgal


Scattering processes have been most successful in imaging and characterization of biologic tissues. In the traditional sense scattering may be defined as the change of amplitude, frequency, phase velocity, or direction of propagation of a wave as a result of spatial or temporal nonuniformities of the medium. The inhomogeneities arise because of variations in compressibility or acoustic impedance differences. In this section, we almost exclusively treat scattering as a phenomenon of redirection of energy in space. A few techniques that are currently used to extract quantitative information about the nature of the tissues in the echo mode are discussed.


Acoustical Society Ultrasonic Image Backscatter Signal Normal Human Liver Rician Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. M. Sehgal and J. F. Greenleaf, “Scattering of ultrasound by tissues,” Ultrasonic Imaging, vol. 6, pp. 60–80, January, 1984.Google Scholar
  2. [2]
    M. Azimi and A. C. Kak, “Distortion in diffraction tomography caused by multiple scattering,” IEEE Transactions on Medical Imaging, vol. MI-2, pp. 176–195, December, 1983.Google Scholar
  3. [3]
    P. He and J. F. Greenleaf, “Application of stochastic analysis to ultrasonic echoes-estimation of attenuation and tissue heterogeneity from peaks of echo envelope,” Journal of the Acoustical Society of America, vol. 79, pp. 526–534, February, 1986.Google Scholar
  4. [4]
    P. He and J. F. Greenleaf, “Attenuation estimation on phantoms-a stability test,” Ultrasonic Imaging, vol. 8, pp. 1–10, 1986.PubMedCrossRefGoogle Scholar
  5. [5]
    F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” Journal of the Acoustical Society of America, vol. 73, pp. 1366–1373, 1983.PubMedCrossRefGoogle Scholar
  6. [6]
    L. A. Chemov, Wave Propagation in a Random Medium. New York: Dover Publications, 1960.Google Scholar
  7. [7]
    F. L. Lizzi and M. E. Elbaum, “Clinical spectrum analysis techniques for tissue characterization,” in Ultrasonic Tissue Characterization II (M. Linzer, ed.), pp. 111–119, National Bureau of Standards (Special publication no. 525), Washington, DC, 1979.Google Scholar
  8. [8]
    L. L. Fellingham and F. G. Sommer, “Ultrasonic characterization of tissue structure in the in vivo human liver and spleen,” IEEE Transactions on Sonics and Ultrasonics, vol. SU-31, pp. 418–428, July, 1984.Google Scholar
  9. [9]
    F. G. Sommer, L. F. Joynt, B. A. Carroll, and A. Macovski, “Ultrasonic characterization of abdominal tissues via digital analysis of backscattered waveforms,” Radiology, vol. 141, pp. 811–817, 1981.PubMedGoogle Scholar
  10. [10]
    L. Joynt, D. Boyle, H. Rakowski, R. Popp, and W. Beaver, “Identification of tissue parameters by digital processing of real-time ultrasonic clinical cardiac data,” in Ultrasonic Tissue Characterization II (M. Linzer, ed.), pp. 267–273, National Bureau of Standards (Special publication no. 525), Washington, DC, 1979.Google Scholar
  11. [11]
    R. F. Wagner, M. F. Insana, and D. G. Brown, “Unified approach to the detection and classification of speckle texture in diagnostic ultrasound,” Optical Engineering, vol. 25, pp. 738–742, June, 1986.Google Scholar
  12. [12]
    M. F. Insana, R F. Wagner, B. S. Garra, D. G. Brown, and T. H. Shawker, “Analysis of ultrasound image texture via generalized Rician statistics,” Optical Engineering, vol. 25, pp. 743–748, June, 1986.Google Scholar
  13. [13]
    R. F. Wagner, M. F. Insana, and D. G. Brown, “Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound,” Journal of Optical Society of America [A], vol. 4, pp. 910922, 1987.Google Scholar
  14. [14]
    A. Chu, C. M. Sehgal, and J. F. Greenleaf, “Use of gray value distribution of run lengths for texture analysis,” Pattern Recognition Letters, vol. 11, pp. 415–419, 1990.CrossRefGoogle Scholar
  15. [15]
    R. M. Haralick, “Statistical and structural approaches to texture,” Proceedings of the IEEE, vol. 67, pp. 786–804, 1979.CrossRefGoogle Scholar
  16. [16]
    J. M. Thijssen and A. M. Verbeek, “Computer analysis of A-mode video echograms from choroidal melanoma,” in Ultrasonography in Ophthalmology (J. M. Thijssen and A. M. Verbeek, eds.), vol. 8, pp. 123–139, Dr. W. Junk Publishers. The Hague, 1981.Google Scholar
  17. [17]
    D. Nicholas, A. Barrett, J. M. G. Chu, D. O. Cosgrove, P. Garbutt, J. Green, S. Fussell, and C. R. Hill, “Computer analysis of gray scale tomograms,” in Acoustical Imaging (A. F. Metherell, ed.), vol. 8, pp. 731–744, Plenum Press, New York, 1980.Google Scholar
  18. [18]
    R. A. Lerski, E. Bamett, P. Morley, P. R. Mills, G. Watkinson, and R. N. M. MacSween, “Computer analysis of ultrasonic signals in diffuse liver disease,” Ultrasound in Medicine and Biology, vol. 5, pp. 341–350, 1979.PubMedCrossRefGoogle Scholar
  19. [19]
    R. A. Lerski, M. J. Smith, P. Morley, E. Barnett, P. R. Mills, G. Watkinson, and R. N. M. MacSween, “Discriminant analysis of ultrasonic texture data in diffuse alcoholic disease. 1. Fatty liver and cirrhosis,” Ultrasonic Imaging, vol. 3, pp. 164–172, April, 1981.Google Scholar
  20. [20]
    O. R. Mitchell, C. R. Myers, and W. Boyne, “A max-min measure for image texture analysis,” IEEE Transactions on Communications, vol. C26, pp. 408–414, 1977.CrossRefGoogle Scholar
  21. [21]
    M. S. Good, J. L. Rose, and B. Goldberg, “Application of pattern recognition techniques to breast cancer detection: ultrasonic analysis of 100 pathologically confirmed tissue areas,” Ultrasonic Imaging, vol. 4, pp. 378–396, October, 1982.Google Scholar
  22. [22]
    M. M. Galloway, “Texture analysis using gray level run lengths,” Computer Graphics and Image Processing, vol. 4, pp. 172–179, 1975.CrossRefGoogle Scholar
  23. [23]
    A. K. Bhandari and N. C. Nanda, “Two-dimensional echocardiographic recognition of abnormal changes in the myocardium,” Ultrasound in Medicine and Biology, vol. 8, pp. 663–671, 1982.PubMedCrossRefGoogle Scholar
  24. [24]
    D. J. Skorton, H. E. Melton, Jr., N. G. Pandian, J. Nichols, S. Koyanagi, M. L. Marcus, S. M. Collins, and R. E. Kerber, “Detection of acute myocardial infarction in closed-chest dogs by analysis of regional two-dimensional echocardiographic gray-level distributions,” Circulation Research, vol. 52, pp. 36–44, 1983.Google Scholar
  25. [25]
    D. J. Skorton, S. M. Collins, J. Nichols, N. G. Pandian, J. A. Bean, and R. E. Kerber, “Quantitative texture analysis in two-dimensional echocardiography: application to the diagnosis of experimental myocardial contusion,” Circulation, vol. 68, pp. 217–223, 1983.PubMedCrossRefGoogle Scholar
  26. [26]
    J. F. Greenleaf, K. Chandrasekaran, and H. A. McCann, “Advanced tissue analysis and display with ultrasound,” Proceedings of Xth Brazilian Conference on Biomedical Engineering, vol. 4, no. 2, pp. 49–60, 1987.Google Scholar
  27. [27]
    K. Chandrasekaran, R. C. Bansal, J. F. Greenleaf, A. Hauck, J. B. Seward, A. J. Tajik, and L. L. Bailey, `Early recognition of heart transplant rejection by backscatter analysis from serial 2D echos in a heterotopic transplant model,“ Journal of Heart Transplantation, vol. 6, pp. 1–7, 1987.PubMedGoogle Scholar
  28. [28]
    V. Goldberg (Murmis), J. J. Gisvold, T. M. Kinter, and J. F. Greenleaf, “Texture analysis of ultrasound B-scans to aid diagnosis of cancerous lesions in the breast,” IEEE Ultrasonics Symposium, vol. 2, pp. 839–842, 1988.Google Scholar
  29. [29]
    S. W. Flax, G. H. Glover, and N. J. Pelc, “Textural variations in B-mode ultrasonography: a stochastic model,” Ultrasonic Imaging, vol. 3, pp. 235257, July, 1981.Google Scholar
  30. [30]
    D. J. Skorton, S. M. Collins, and R. E. Kerber, “Digital image processing and analysis in echocardiography,” in Cardiac Imaging and Image Processing (S. M. Collins and D. J. Skorton, eds.), pp. 171–205, McGraw-Hill Company. New York, 1986.Google Scholar
  31. [31]
    K. Chandrasekaran, P. E. Aylward, S. R. Fleagle, T. L. Bums, J. B. Seward, A. J. Tajik, S. M. Collins, and D. J. Skorton, “Feasibility of identifying amyloid and hypertrophic cardiomyopathy with the use of computerized quantitative texture analysis of clinical echocardiographic data,” Journal of the American College of Cardiology, vol. 13, pp. 832–840, 1989.PubMedCrossRefGoogle Scholar
  32. [32]
    N. J. Pressman, “Markovian analysis of cervical cell images,” Journal of Histochemistry and Cytochemistry, vol. 24, pp. 138–144, 1976.PubMedCrossRefGoogle Scholar

Copyright information

© Mayo Foundation 1992

Authors and Affiliations

  • James F. Greenleaf
    • 1
  • Chandra M. Sehgal
    • 2
  1. 1.Department of Physiology and BiophysicsMayo Clinic FoundationRochesterUSA
  2. 2.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations