Skip to main content

Class 0 Scattering

  • Chapter
  • 37 Accesses

Abstract

It was pointed out in Chapter 1 that ultrasound interacts intimately with tissues. These interactions occur at different levels, which from a practical point of view can be classified on the basis of the sizes of the acoustic inhomogeneities. In principle, the interactions occur at molecular as well as macroscopic levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. K. J. Parker, T. A. Tuthill, and R. B. Baggs, “Ultrasound attenuation of glycogen: In vitro and in vivo results,” Proceedings IEEE Ultrasonics Symposium, vol. 2, pp. 993–996, 1987.

    Google Scholar 

  2. E. L. Carstensen, “Absorption of sound in tissues,” in Ultrasonic Tissue Characterization II (M. Linzer, ed.), pp. 29–36, National Bureau of Standards (Special publication no. 525), Washington, DC, 1979.

    Google Scholar 

  3. F. W. Kremkau, R. W. Barnes, and C. P. McGraw, “Ultrasonic attenuation and propagation speed in normal human brain,” Journal of the Acoustical Society of America, vol. 70, pp. 29–38, 1981.

    Article  Google Scholar 

  4. F. Dunn and J. K. Brady, “Absorption of ultrasound in biological media,” Biofizika, vol. 18, no. 2, pp. 1063–1066, 1973.

    PubMed  CAS  Google Scholar 

  5. L. W. Kessler, W. D. O’Brien Jr., and F. Dunn, “Ultrasonic absorption in aqueous solutions of polyethylene glycol,” Journal of Physical Chemistry, vol. 74, pp. 4096–4102, 1970.

    Article  CAS  Google Scholar 

  6. H. Pauly and H. P. Schwan, “Mechanism of absorption of ultrasound in liver tissue,” Journal of the Acoustical Society of America, vol. 50, pp. 692–699, 1971.

    Article  PubMed  CAS  Google Scholar 

  7. L. J. Slutsky, L. Madsen, R. D. White, and J. Harkness, “Kinetics of the exchange of protons between hydrogen phosphate ions and histidyl residue,” Journal of Physical Chemisty, vol. 84, pp. 1325–1329, 1980.

    Article  CAS  Google Scholar 

  8. S. A. Goss, L. A. Frizzell, and F. Dunn, “Ultrasonic absorption and attenuation in mammalian tissues,” Ultrasound in Medicine and Biology, vol. 5, pp. 181–186, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. F. W. Kremkau, “Biomolecular absorption of ultrasound. III. Solvent interactions,” Journal of the Acoustical Society of America, vol. 83, pp. 2410–2415, June, 1988.

    Google Scholar 

  10. D. R. Raichel, “Sound propagation in Voigt fluid, ” Journal of the Acoustical Society of America, vol. 52, pp. 395–398, 1972.

    Article  CAS  Google Scholar 

  11. A. S. Ahuja, “Ultrasonic attenuation in soft tissues- Reasons for large magnitude and linear frequency dependence,” Ultrasonic Imaging, vol. 2, pp. 391–396, October, 1980.

    Google Scholar 

  12. J. D. Pohlhammer, C. A. Edwards, and W. D. O’Brien, Jr., “Phase insensitive ultrasonic attenuation coefficient determination of fresh bovine liver over an extended frequency range,” Medical Physics, vol. 8, pp. 692–694, 1981.

    Article  Google Scholar 

  13. M. O’Donnell and J. G. Miller, “Mechanisms of ultrasonic attenuation in soft tissue,” in Ultrasonic Tissue Characterization II (M. Linzer, ed.), pp. 37–40, National Bureau of Standards (Special publication no. 525), Washington, DC, 1979.

    Google Scholar 

  14. F. Dunn, P. D. Edmonds, and W. J. Fry, “Absorption and dispersion of ultrasound in biological media,” in Biological Engineering (H. P. Schwan, ed.), pp. 205–332, McGraw-Hill Book Co., 1969.

    Google Scholar 

  15. J. C. Bamber, “Attenuation and absorption,” in Physical Principles of Medical Ultrasonics (C. R. Hill, ed.), pp. 118–199, Ellis Horwood Limited. Chichester, England, 1986.

    Google Scholar 

  16. D. Shore and C. A. Miles, “Attenuation of ultrasound in homogenates of bovine skeletal muscle and other tissues,” Ultrasonics, vol. 26, pp. 218–223, July, 1988.

    Google Scholar 

  17. M. O. Woods and C. A. Miles, “Ultrasound speed and attenuation in homogenates of bovine skeletal muscle,” Ultrasonics, vol. 24, pp. 260266, September, 1986.

    Google Scholar 

  18. C. M. Sehgal and J. F. Greenleaf, “Ultrasonic absorption and dispersion in biological media: A postulated model,” Journal of the Acoustical Society of America, vol. 72, pp. 1711–1718, 1982.

    Article  Google Scholar 

  19. S. Leeman, “Ultrasound pulse propagation in dispersive media,” Physics in Medicine and Biology, vol. 25, pp. 481–488, 1980.

    Article  PubMed  CAS  Google Scholar 

  20. R. M. Arthur and K. V. Gurumurthy, “A single-pole model for the propagation of ultrasound in soft tissues,” Journal of the Acoustical Society of America, vol. 77, pp. 1589–1597, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. H. A. H. Jongen, J. M. Thijssen, M. van den Aarssen, and W. A. Verhoef, “A general model for the absorption of ultrasound by biological tissues and experimental verification,” Journal of the Acoustical Society of America, vol. 79, pp. 535–540, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. T. G. Muir and E. L. Carstensen, “Prediction of nonlinear acoustic effects at biomedical frequencies and intensities,” Ultrasound in Medicine and Biology, vol. 6, pp. 345–357, 1980.

    Article  PubMed  CAS  Google Scholar 

  23. R. T. Beyer, “Parameter of nonlinearity in fluids,” Journal of the Acoustical Society of America, vol. 32, pp. 719–721, 1960.

    Article  Google Scholar 

  24. B. Hartmann, “Potential energy effects on the sound speed in liquids,” Journal of the Acoustical Society of America, vol. 65, pp. 1392–1396, 1979.

    Article  CAS  Google Scholar 

  25. Z. Zhu, M. S. Roos, W. N. Cobb, and K. Jensen, “Determination of the acoustic nonlinearity parameter B/A from phase measurements,” Journal of the Acoustical Society of America, vol. 74, pp. 1518–1521, 1983.

    Article  Google Scholar 

  26. C. M. Sehgal and J. F. Greenleaf, “Scattering of ultrasound by tissues,” Ultrasonic Imaging, vol. 6, pp. 60–80, January, 1984.

    Google Scholar 

  27. F. Dunn, W. K. Law, and L. A. Frizzell, “Nonlinear ultrasonic propagation in biological media, ” British Journal of Cancer, vol. 45 (Suppl. 5), pp. 55–58, 1982.

    Google Scholar 

  28. N. Ichida, T. Sato, and M. Linzer, “Imaging the nonlinear ultrasonic parameter of a medium,” Ultrasonic Imaging, vol. 5, pp. 295–299, October, 1983.

    Google Scholar 

  29. C. A. Cain, “Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. A theoretical basis,” Journal of the Acoustical Society of America, vol. 80, pp. 28–32, 1986.

    Article  Google Scholar 

  30. C. M. Sehgal, B. Porter, and J. F. Greenleaf. Porter, and J. F. Greenleaf, “Relationship between acoustic nonlinearity and the bound and the unbound states of water,” IEEE Ultrasonic Symposium, vol. 2, pp. 883–886, 1985.

    Google Scholar 

  31. Y. Nakagawa, M. Nakagawa, M. Yoneyama, and M. Kikuchi, “New nonlinear parameter imaging CT system using a parametric acoustic array,” in Acoustical Imaging (A. J. Berkhout, J. Ridder, and L. F. van der Wal, eds.), vol. 4, pp. 595–604, Plenum Press, New York, 1985.

    Google Scholar 

  32. C. M. Sehgal, R. C. Bahn, and J. F. Greenleaf, “Measurement of the acoustic nonlinearity parameter B/A in human tissues by a thermodynamic method,” Journal of the Acoustical Society of America, vol. 76, pp. 1023–1029, 1984.

    Article  PubMed  CAS  Google Scholar 

  33. A. F. Apfel, “Prediction of tissue composition from ultrasonic measurements and mixture rules,” Journal of the Acoustical Society of America, vol. 79, pp. 148–152, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. C. M. Sehgal, G. M. Brown, R. C. Balm, and J. F. Greenleaf, “Measurement and use of acoustic nonlinearity and sound speed to estimate composition of excised livers,” Ultrasound in Medicine and Biology, vol. 12, pp. 865–874, November, 1986.

    Google Scholar 

  35. E. C. Everbach, “Tissue composition determination via measurement of the acoustic nonlinearity parameter,” Thesis (Yale University), New Haven, CT 1989.

    Google Scholar 

  36. W. K. Law, L. A. Frizzell, and F. Dunn, “Determination of the nonlinearity parameter B/A of biological media,” Ultrasound in Medicine and Biology, vol. 11, pp. 307–318, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Mayo Foundation

About this chapter

Cite this chapter

Greenleaf, J.F., Sehgal, C.M. (1992). Class 0 Scattering. In: Biologic System Evaluation with Ultrasound. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9243-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9243-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9245-3

  • Online ISBN: 978-1-4613-9243-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics