Skip to main content

Peritoneal Fluid

  • Chapter
The Peritoneum

Abstract

The peritoneal cavity of the human usually contains 5 to 20 ml of serous exudate which varies widely depending on the physiological condition. In the female, this volume changes during the menstrual cycle to reach maximal levels after ovulation (Figure 2.1; Alfonsin & Leiderman, 1980). When pressure in the hepatic sinusoids rises more than 5 to 10 mm Hg, fluid containing large amounts of protein transudes through the liver surface into the abdominal cavity. Excess fluid in the peritoneal cavity is either a transudate (specific gravity < 1.010), which accumulates (ascites) from peritoneal obstruction or circulatory differences (failure, portal cardiac hypertension, hypofibrinogenemia, etc.), or an exudate (specific gravity > 1.020), which arises from inflammation. The hepatic resistance to portal blood flow induces a capillary pressure in the visceral peritoneum that is higher than elsewhere in the body (Guyton, 1973). The pH of peritoneal fluid ranges between 7.5 and 8.0 and contains significant buffering capacity (Greenwalt, Nakamura, & diZerega, 1988). The pH of peritoneal fluid in aspirates from 59 patients with perforated peptic ulcer was 7.0 to 7.8 (Howard & Singh, 1963). Due to the hydrostatic pressure gradient between plasma and the peritoneal compartment, normal peritoneal fluid also contains many of the plasma proteins in about 50% of the plasma concentration (Rune, 1970a, 1970b, 1970c, 1970d).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrenholz DH, Simmons RL. (1988). Peritonitis and other intra-abdominal infections. In: Howard RJ, Simmons RL, eds. Surgical Infectious Diseases. 2nd ed. Connecticut: Appleton & Lange, 605–646.

    Google Scholar 

  • Alfonsin AE, Leiderman S. (1980). Peritoneal fluid throughout the cycle. Obstet y Gin Lat Amer. 38: 53–56.

    Google Scholar 

  • Altemeier WA, Culbertson WR, Fidler JP. (1975). Giant horseshoe intra-abdominal abscess. Ann Surg. 181: 716–725.

    Article  PubMed  CAS  Google Scholar 

  • Atkinson M. (1959). Effect of diuretics on portal venous pressure. Lancet. 2: 819–823.

    Article  PubMed  CAS  Google Scholar 

  • Atkinson M, Losowsky MS. (1961). Mechanism of ascites formation in chronic liver disease. QJ Med. 30: 153–166.

    CAS  Google Scholar 

  • Atkinson M, Losowsky MS. (1962). Plasma colloid osmotic pressure in relation to formation of ascites and oedema in liver disease. Clin. Sci. 22: 383–389.

    PubMed  CAS  Google Scholar 

  • Aune S. (1970a). Transperitoneal exchange. I. Peritoneal permeability studied by transperitoneal plasma clearance of urea, PAH, inulin, and serum albumin in rabbits. Scand J Gastroenterol. 5: 85–97.

    PubMed  CAS  Google Scholar 

  • Aune S. (1970b). Transperitoneal exchange II. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol. 5: 99–104.

    PubMed  CAS  Google Scholar 

  • Aune S. (1970c). Transperitoneal exchange. III. The influence of transperitoneal fluid flux in the peritoneal plasma clearance of serum albumin in rabbits. Scand J Gastroenterol. 5: 161–168.

    PubMed  CAS  Google Scholar 

  • Aune S. (1970d). Transperitoneal exchange IV. The effect of transperitoneal fluid transport on the transfer of solutes. Scand J Gastroenterol 5: 241–252.

    PubMed  CAS  Google Scholar 

  • Badawy SZ, Cuenca V, Marshall L, Munchback R, Rinas AC, Coble DA. (1984). Cellular components in peritoneal fluid in infertile patients with and without endometriosis. Fertil Steril. 42: 704–708.

    PubMed  CAS  Google Scholar 

  • Barrowman JA. (1978). Physiology of the gastrointestinal lymphatic system. Cambridge: Cambridge University Press; 3–30.

    Google Scholar 

  • Bartosik D, Jacobs SL, Kelly LJ. (1986). Endometrial tissue in peritoneal fluid. Fertil Steril. 46: 796–802.

    PubMed  CAS  Google Scholar 

  • Bettendorf U. (1979). Electron microscopic studies on the peritoneal resorption of intraperitoneally injected latex particles via the diaphragmatic lymphatics. Lymphology. 12: 66–70.

    PubMed  CAS  Google Scholar 

  • Blackfan KD, Maxcy KF. (1918). Intraperitoneal injection of saline solution. Am J Dis Child 15: 19–28.

    Google Scholar 

  • Blumenkrantz MJ, Gallagher N, Bashore RA, Tenckhoff H. (1981). Retrograde menstruation in women undergoing chronic peritoneal dialysis. Obstet Gynecol. 57: 667–673.

    PubMed  CAS  Google Scholar 

  • Buyalos RP, Rutanen E-M, Tsui E, Halme J. (1991). Release of tumor necrosis factor alpha by human peritoneal macrophages in response to toxic shock syndrome toxin–1. Obstet Gynecol. 78: 182–186.

    PubMed  CAS  Google Scholar 

  • Carter FS. (1953). Intraperitoneal transfusions as method of rehydration in African child. East Afr Med J. 30: 499–505.

    PubMed  CAS  Google Scholar 

  • Casley-Smith JR. (1964). Endothelial permeability—the passage of particles into and out of diaphragmatic lymphatics. J Exp Physiol. 49: 365–383.

    CAS  Google Scholar 

  • Cohn ZA, Morse SI. (1959). Interactions between rabbit polymorphonuclear leukocytes and staphylcocci. J Exp Med. 110: 419–443.

    Article  PubMed  CAS  Google Scholar 

  • Courtice FC, Simmonds WJ. (1954). Physiological significations of lymph drainage of the serous cavities and lungs. Physiol Rev. 34: 419–447.

    PubMed  CAS  Google Scholar 

  • Cromack DT, Cromack TR, Pretorius G, DeMeules JE. (1985). Development of a predictive value equation for the minimum fluid volume to completely coat the intraperitoneal surface of rodents. Surg Forum. 36: 477–478.

    Google Scholar 

  • Crone C. (1963). Does ‘restricted diffusion’ occur in muscle capillaries? Proc Soc Exp Biol Med. 112: 435–455.

    Google Scholar 

  • Dedrick RL, Zahorko DS, Binder RA. (1975). Pharmacokinetic considerations on resistance to anticancer drugs. Cancer Chemother Rep. 59: 795–804.

    PubMed  CAS  Google Scholar 

  • Dedrick RL, Myers CE, Bungay PM, De Vita VT Jr. (1978). Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 62: 1–11.

    PubMed  CAS  Google Scholar 

  • Dedrick RL. (1985). Theoretical and experimental bases of intraperitoneal chemotherapy. Semin Oncol. 12: 1–6.

    PubMed  CAS  Google Scholar 

  • Dedrick RL, Flessner MF, Collins JM, Schultz JS. (1986). A distributed model of peritoneal transport. In: Mäher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich; 31–35.

    Google Scholar 

  • Dunn DL, Barke RA, Ahrenholz DH, Humphrey EW, Simmons RL. (1984). The adjuvant effect of peritoneal fluid in experimental peritonitis. Ann Surg. 199: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Dunselman GAJ, Hendrix MGR, Bouckaert PXJM, Evers JLH. (1988). Functional aspects of peritoneal macrophages in endometriosis of women. J Reprod Fertil. 82: 707–710.

    Article  PubMed  CAS  Google Scholar 

  • Eskeland G. (1969). Growth of autologous peritoneal cells in intraperitoneal diffusion chambers in rats. I. A light microscopical study. Acta Pathol Microbiol Scand. 68: 481–500.

    Google Scholar 

  • Esperanca MJ, Collins DL. (1966). Peritoneal dialysis efficiency in relation to body weight. J Ped Surg. 1: 162–169.

    Article  Google Scholar 

  • Fakih H, Baggett B, Holtz G, Tsang K-Y, Lee JC, Williamson HO. (1987). Interleukin-1: a possible role in the infertility associated with endometriosis. Fertil Steril. 47: 213–217.

    PubMed  CAS  Google Scholar 

  • Felix M, Dalton AJ. (1955). A phase contrast microscope study of free cells native to the peritoneal fluid of DBA/a mice. J Natl Cancer Inst. 16: 415–455.

    PubMed  CAS  Google Scholar 

  • Flessner MF, Parker RJ, Sieber SM. (1983). Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol. 244 (Heart Circ Physiol 13): H89–H96.

    PubMed  CAS  Google Scholar 

  • Flessner MF, Dedrick RL, Schultz JS. (1985a). A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am J Physiol. 248 (Renal Fluid Electrolyte Physiol 17): F413–F424.

    PubMed  CAS  Google Scholar 

  • Flessner MF, Dedrick RL, Schultz JS. (1985b). Exchange of macromolecules between peritoneal cavity and plasma. Am J Physiol. 248 (Heart Circ Physiol 17): H15–H25.

    PubMed  CAS  Google Scholar 

  • Flessner MF, Fenstermacher JD, Blasberg RG, Dedrick RL. (1985c). Peritoneal absorption of macromolecules studied by quantitative autoradiography. Am J Physiol. 248 (Heart Circ Physiol 17): H26–H32.

    PubMed  CAS  Google Scholar 

  • Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. (1985d). A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am J Physiol. 248 (Renal Fluid Electrolyte Physiol 17): F425–F435.

    PubMed  CAS  Google Scholar 

  • Ressner MR, Dedrick RL, Fenstermacher JD, Blasberg RG, Sieber SM. (1986). Peritoneal absorption of macromolecules. In: JF Mäher, JF Winchester, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich; 41–46.

    Google Scholar 

  • Greenwalt D, Nakamura RM, diZerega G. (1988). Determination of pH and pKa in human peritoneal fluid. Curr Surg. 45: 217–218.

    Google Scholar 

  • Guyton AC. (1965). Interstitial fluid pressure: II. Pressure-volume curves of interstitial space. Circ Res. 16: 452–460.

    PubMed  CAS  Google Scholar 

  • Guyton AR. (1973). The special fluids systems of the body. In: Guyton AR, ed. Textbook of Medical Physiology. 4th ed. Philadelphia: WB Saunders; 29–50.

    Google Scholar 

  • Halme J, Becker S, Hammond MG, Raj MHG, Raj S. (1983). Increase activation of pelvic macrophages in infertile women with endometriosis. Am J Obstet Gynecol. 145: 333–337.

    PubMed  CAS  Google Scholar 

  • Halme J, Becker S, Wing R. (1984a). Accentuated cyclic activation of peritoneal macrophages in patients with endometriosis. Am J Obstet Gynecol. 148: 85–90.

    PubMed  CAS  Google Scholar 

  • Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM. (1984b). Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol. 64: 151–154.

    PubMed  CAS  Google Scholar 

  • Halme J, Becker S, Haskill S. (1987). Altered maturation and function of peritoneal macropahges: possible role in pathogenesis of endometriosis. Am J Obstet Gynecol. 156: 783–789.

    PubMed  CAS  Google Scholar 

  • Halme J, White C, Kauma S, Estes J, Haskill S. (1988). Peritoneal macrophages from patients with endometriosis release growth factor activity in vitro. J Clin Endocrinol Metab. 66: 1044–1048.

    Article  PubMed  CAS  Google Scholar 

  • Halme J. (1989). Release of tumor necrosis factor alpha by human peritoneal macrophages in vivo and in vitro. Am J Obstet Gynecol. 161: 1718–1725.

    PubMed  CAS  Google Scholar 

  • Hirsch JG, Church AB. (1960). Studies of phagocytosis of group A streptococci by polymorphonuclear leukocytes in vitro. J Exp Med. 111: 309–322.

    Article  PubMed  CAS  Google Scholar 

  • Howard JM, Singh CM. (1963). Peritoneal fluid pH after perforation of peptic ulcers. Arch Surg. 81: 141–142.

    Google Scholar 

  • Jenkins C, Benacerref B. (1960). In vitro studies on the interaction between mouse peritoneal macrophages and strains of Salmonella and Escherichia coli. J Exp Med. 112: 403–417.

    Article  Google Scholar 

  • Koninckx PR, Ide P, Vandenbroucke W, Brosens I A. (1980). New aspects of the pathophysiology of endometriosis and associated infertility. J Reprod Med. 24: 257–263.

    PubMed  CAS  Google Scholar 

  • Kruger S, Greve DW, Schueler FW. (1962). Absorption of fluid from peritoneal cavity. Arch Int Pharmacodyn Ther. 137: 173–178.

    PubMed  CAS  Google Scholar 

  • Kruitwagen RFPM, Poels LG, Willemsen WNP, de Ronde IJY, Jap PHK, Rolland R. (1991). Endometrial epithelial cells in peritoneal fluid during the early follicular phase. Fertil Steril 55: 297–303.

    PubMed  CAS  Google Scholar 

  • Kulenthran A, Jeyalakshmi N. (1989). Dissemination of endometrial cells at laparoscopy and chromotubation—a preliminary report. Int J Fertil. 34: 256–258.

    PubMed  CAS  Google Scholar 

  • Leak LV, Rahil K. (1978). Permeability of the diaphragmatic mesothelium: the ultrastructural basis for ‘stomata.’ Am J Anat. 151: 557–594.

    Article  PubMed  CAS  Google Scholar 

  • Levison ME, Pontzer RE. (1979). Peritonitis and other intra-abdominal infections. In: Mandell GL, Douglas RG Jr, Bennett JE, eds. Principles and Practice of Infectious Diseases. 2nd ed. New York: Wiley; 476–503.

    Google Scholar 

  • Losowsky MS, Jones DP, Lieber CS, Davidson CS. (1963). Local factors in ascites formation during sodium retention in cirrhosis. N Engl J Med. 268: 651–653.

    Article  Google Scholar 

  • Mengert WF, Cobb SW, Brown WW Jr. (1951). Introduction of blood into peritoneal cavity: experimental study. JAMA. 147: 34–37.

    CAS  Google Scholar 

  • Mitchell GAG. (1941). The spread of acute intraperitoneal effusions. Br J Surg. 28: 291–313.

    Article  Google Scholar 

  • Mungyer G, Willemsen WNP, Rolland R, Vemer HM, Ramaekers FCS, Jap PHK, Poels LG. (1987). Cells of the mucous membrane of the female genital tract in culture: a comparative study with regard to the histogenesis of endometriosis. In Vitro Cell Dev Biol 23: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Odel HM, Ferris DO, Power MH. (1948). Clinical considerations of the problem of extra renal excretion: peritoneal lavage. Med Clin North Am. 32: 989–1076.

    PubMed  CAS  Google Scholar 

  • Pappenheimer JR. (1953). Passage of molecules through capillary walls. Physiol Rev. 33: 387–423.

    PubMed  CAS  Google Scholar 

  • Polishuk WZ, Sharf M. (1965). Culposcopic findings in primary dysmenorrhoea. Obstet Gynecol 26: 746–748.

    PubMed  CAS  Google Scholar 

  • Reed RK, Wiig H. (1981). Compliance of the interstitial space in rats. I. Studies on hindlimb skeletal muscle. Acta Physiol Scand. 113: 297–303.

    Article  CAS  Google Scholar 

  • Roberts R. (1967). The interaction in vitro between group B meningococci and rabbit polymorphonuclear leukocytes. Demonstration of type specific opsonins and bactericidins. J Exp Med. 126: 795–817.

    Article  PubMed  CAS  Google Scholar 

  • Schechter AJ, Cary MK, Carpentieri AL, Darrow DC. (1933). Changes in composition of fluids injected into peritoneal cavity. Am J Dis Child. 46: 1015–1026.

    CAS  Google Scholar 

  • Shear L, Swartz C, Shinaberger JA, Barry KG. (1965). Kinetics of peritoneal fluid absorption in adult man. N Engl J Med. 272: 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Shelton E, Rice ME. (1959). Growth of normal peritoneal cells in diffusion chambers: a study of cell modulation. Am J Anat. 105: 281–341.

    Article  PubMed  CAS  Google Scholar 

  • Wegner G. (1877). Chirurgische Bemerkungen über die peritoneal Höhle, mit besonderer Berücksichtigung der Ovariotomie. Arch Klin Chir 20: 51–57.

    Google Scholar 

  • Wiederhielm CA. (1972). The interstitial space. In: Fung YC, ed. Biomechanics: Its Foundations and Objectives. Englewood Cliffs; NJ: Prentice Hall, 273–286.

    Google Scholar 

  • Wiig H, Reed RK. (1981). Compliance of the interstitial space in rats II. Studies on skin. Acta Physiol Scand. 113: 307–315.

    Article  PubMed  CAS  Google Scholar 

  • Willemsen WNP, Mungyer G, Smets H, Rolland R, Vemer H, Jap P. (1985). Behavior of cultured glandular cells obtained by flushing of the uterine cavity. Fertil Steril. 44: 92–95.

    PubMed  CAS  Google Scholar 

  • Yoffey JM, Courtice FC. (1970). Lymphatics, Lymph, and the Lymphomyeloid Complex. London: Academic Press; 206–213.

    Google Scholar 

  • Zinsser HH, Pryde AW. (1952). Experimental study of physical factors; including fibrin formation, influencing the spread of fluids and small particles within and from the peritoneal cavity of the dog. Ann Surg. 136: 818–827.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin New York, Inc.

About this chapter

Cite this chapter

diZerega, G.S., Rodgers, K.E. (1992). Peritoneal Fluid. In: The Peritoneum. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9235-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9235-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9237-8

  • Online ISBN: 978-1-4613-9235-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics