Skip to main content

Nonlinear Forecasting, Chaos and Statistics

  • Conference paper
Modeling Complex Phenomena

Part of the book series: Woodward Conference ((WOODWARD))

Abstract

Many natural and experimental time series are generated by a combination of coherent, low-dimensional dynamics and stochastic, high-dimensional dynamics. A famous example is the sunspot time series. In the first part of this paper a nonlinear forecasting algorithm is used to attempt to identify how much of the irregularity in an aperiodic time series is due to low-dimensional chaos, as opposed to high-dimensional noise. The algorithm is applied to experimentally generated time series from coupled diodes, fluid turbulence and flame dynamics, and compared to dimension calculations. Theoretical results concerning the limitations of such forecasting algorithms in the presence of noise are reviewed in the second part of the paper. These results use a combination of ideas from dynamical systems and statistics. In particular, the state space reconstruction problem is investigated using properties of likelihood functions at low noise levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.D.I. Abarbanel, R. Brown, and J.B. Kadtke. Prediction and system identification in chaotic nonlinear systems: Time series with broadband spectra. Phys. Lett. A, 18: 401–408, 1989.

    Google Scholar 

  2. N. B. Abraham, A. M. Albano, A. Passamante, and P. E. Rapp, editors. Measures of Complexity and Chaos, volume 208 of NATO Advanced Science Institute Series. Plenum, New York, 1989.

    Google Scholar 

  3. Z. Aleksic. Estimating the embedding dimension. Technical report, Visual Sciences Centre, Australian National University, Canberra, ACT2601, 1990.

    Google Scholar 

  4. R. Badii and A.Politi. Statistical description of chaotic attractors: The dimension function. J. Stat. Phys., 40: 725, 1985.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. R. Badii. Unfolding complexity in nonlinear dynamical systems. In: N. B. Abraham, A. M. Albano, A. Passamante, and P. E. Rapp, editors. Measures of Complexity and Chaos, volume 208 of NATO Advanced Science Institute Series. Plenum, New York, 1989.

    Google Scholar 

  6. J.L.Breeden and A.Hubler, Reconstructing Equations of Motion from experimental data with hidden variables. Phys. Rev. A, 42: 5817–5826, 1990.

    Article  MathSciNet  ADS  Google Scholar 

  7. K.Briggs. Improved methods for the analysis of chaotic time series. Mathematics Research Paper 90–2, La Trobe Univ. Melbourne, Australia, 1990.

    Google Scholar 

  8. W.Brock, W.Dechert and J.Scheinkman. A test for Independence based on the correlation dimension. University of Wisconsin-Madison SSRI Paper 8702, 1987.

    Google Scholar 

  9. D.S. Broomhead and G.P. King. Extracting qualitative dynamics from experimental data. Physica, 20D: 217, 1986.

    MathSciNet  MATH  Google Scholar 

  10. D.S. Broomhead, R.Jones and G.P. King. Topological dimension and local coordinates from time series data. J.Phys. A: Math. Gen, 20: L563 - L569, 1987.

    Article  MathSciNet  ADS  Google Scholar 

  11. D.S. Broomhead, R.Indik, A.C.Newell and D.A.Rand. Local adaptive Galerkin bases for large dimensional dynamical systems. Submitted to Nonlinearity, 1990.

    Google Scholar 

  12. D.S. Broomhead and M.Casdagli. Unpublished research.

    Google Scholar 

  13. M. Casdagli. Nonlinear prediction of chaotic time series. Physica, 35D: 335, 1989.

    MathSciNet  MATH  Google Scholar 

  14. M. Casdagli, S. Eubank, J.D. Farmer, and J. Gibson. State space reconstruction in the presence of noise. To appear in Physica D, 1991.

    Google Scholar 

  15. M. Casdagli. Chaos and deterministic versus stochastic nonlinear modeling. Preprint 1991.

    Google Scholar 

  16. M. Casdagli, D. DesJardins, S.Eubank, J.D.Farmer, J.Gibson, N.Hunter and J.Theiler. Nonlinear modeling of chaotic time series: theory and applications. In J.Kim and J.Stringer, editors, EPRI workshop on Applications of chaos 1991 to appear.

    Google Scholar 

  17. M. Casdagli and S. Eubank, editors, Nonlinear Prediction and Modeling. Addison-Wesley, 1991. to appear.

    Google Scholar 

  18. A. Cenys and K. Pyragas. Estimation of the number of degrees of freedom from chaotic time series. Phys. Lett. A, 129: 227, 1988

    Article  ADS  Google Scholar 

  19. J.P. Crutchfield and B.S. McNamara. Equations of motion from a data series. Complex Systems, 1: 417–452, 1987.

    MathSciNet  MATH  Google Scholar 

  20. J.P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev. Lett., 63: 105, 1989.

    Article  MathSciNet  ADS  Google Scholar 

  21. B.Efron and R.Tsibirani. Bootstrap methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science, 1 (1): 54–77, 1986.

    Article  MathSciNet  Google Scholar 

  22. J. D. Farmer and J. J. Sidorowich. Predicting chaotic time series. Phys. Rev. Lett., 59 (8): 845–848, 1987.

    Article  MathSciNet  ADS  Google Scholar 

  23. J.D. Farmer and J.J. Sidorowich. Exploiting chaos to predict the future and reduce noise. In Y.C. Lee, editor, Evolution, Learning and Cognition. World Scientific, 1985.

    Google Scholar 

  24. J. D. Farmer and J. J. Sidorowich. Optimal shadowing and noise reduction. Physica, 47D: 373, 1991.

    MathSciNet  MATH  Google Scholar 

  25. A.M. Fraser. Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria. Physica, 34D, 1989.

    Google Scholar 

  26. A.M. Fraser and H.L. Swinney. Independent coordinates for strange attractors from mutual information. Phys. Rev., 33A: 1134–1140, 1986.

    MathSciNet  ADS  MATH  Google Scholar 

  27. J. Geweke. Inference and forecasting for chaotic nonlinear time series. Technical report, Duke University, 1989.

    Google Scholar 

  28. M. Gorman and K. Robbins. Real-time identification of flame dynamics. In J.Kim and J.Stringer, editors, EPRI workshop on Applications of chaos 1991 to appear.

    Google Scholar 

  29. G. Gunaratne, P. Linsay and M. Vinson. Chaos beyond onset: A comparison of theory and experiment. Phys. Rev. Lett. 63: 1, 1989.

    Article  MathSciNet  ADS  Google Scholar 

  30. H. Haucke and R. Ecke. Mode locking and chaos in Rayleigh-Benard convection. Physica 25D: 307, 1987.

    MATH  Google Scholar 

  31. X. He. Personal communication.

    Google Scholar 

  32. N.F. Hunter. Application of nonlinear time series models to driven systems. In M. Casdagli and S. Eubank, editors, Nonlinear Prediction and Modeling. Addison-Wesley, 1991. to appear.

    Google Scholar 

  33. B. LeBaron. Nonlinear Forecasts for the S & P Stock Index. In M. Casdagli and S. Eubank, editors, Nonlinear Prediction and Modeling. Addison-Wesley, 1991. to app ear.

    Google Scholar 

  34. P. Linsay. An efficient method of forecasting time series using linear interpolation. Phys. Lett. A 153: 353, 1991.

    Article  ADS  Google Scholar 

  35. G. Mayer-Kress, editor. Dimensions and Entropies in Chaotic Systems — Quantification of Complex Behavior, volume 32 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  36. A. Osborne and A. Provenzale. Finite correlation dimension for stochastic systems with power-law spectra. Physica, 35D: 357–381, 1989.

    MathSciNet  MATH  Google Scholar 

  37. N.H. Packard. A genetic learning algorithm for the analysis of complex data. Preprint, University of Illinois, 1989.

    Google Scholar 

  38. M. Priestley. Spectral analysis and time series. p728 Academic Press, 1981.

    MATH  Google Scholar 

  39. T.Sauer, J.A.Yorke and M.Casdagli. Embedology. Submitted to Comm. Math. Phys., 1990.

    Google Scholar 

  40. J.D. Scargle, Modeling chaotic and random processes. To appear in Journal of Astrophysics, 1990.

    Google Scholar 

  41. G. Sugihara and R. May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in a data series. Nature, 344: 734–741, 1990.

    Article  ADS  Google Scholar 

  42. F. Takens. Detecting strange attractors in fluid turbulence. In D. Rand and L.-S. Young, editors, Dynamical Systems and Turbulence, Berlin, 1981. Springer-Verlag.

    Google Scholar 

  43. J. Theiler. Spurious dimensions from correlation algorithms applied to limited time series data. Phys. Rev., 34A: 2427–2432, 1986.

    Article  ADS  Google Scholar 

  44. J. Theiler. Estimating fractal dimension. J. Opt. Soc. Am. A, 7: 1055–1073, 1990.

    Article  MathSciNet  ADS  Google Scholar 

  45. J. Theiler. Personal communication.

    Google Scholar 

  46. H. Tong. Nonlinear Time Series Analysis: A Dynamical Systems Approach. Oxford University Press, 1990.

    Google Scholar 

  47. H. Tong and K.S. Lim Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society B, 42 (3): 245–292, 1980.

    MATH  Google Scholar 

  48. B. Townshend. Nonlinear prediction of speech signals. to appear in IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990.

    Google Scholar 

  49. A. Weigend, B.Huberman and D.Rumelhart. Predicting the future: a connectionist approach. International Journal of Neural Systems, 1: 193–209, 1990.

    Article  Google Scholar 

  50. A. Weigend, B.Huberman and D.Rumelhart. Predicting sunspots and exchange rates with connectionist networks. In M. Casdagli and S. Eubank, editors, Nonlinear Prediction and Modeling. Addison-Wesley, 1991. to appear.

    Google Scholar 

  51. G. U. Yule. Philos. Trans. Roy. Soc. London A, 226: 267, 1927.

    Article  ADS  MATH  Google Scholar 

  52. D. Zambella and P. Grassberger. Complexity of forecasting in a class of simple models. Complex Systems, 2: 269, 1988.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Casdagli, M. (1992). Nonlinear Forecasting, Chaos and Statistics. In: Lam, L., Naroditsky, V. (eds) Modeling Complex Phenomena. Woodward Conference. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9229-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9229-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9231-6

  • Online ISBN: 978-1-4613-9229-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics