On the Evolution of Phase Boundaries pp 81-100 | Cite as

# Effect of Modulated Taylor-Couette Flows on Crystal-Melt Interfaces: Theory and Initial Experiments

## Abstract

An important problem in the process of crystal growth from the melt phase is to understand the interaction of the crystal-melt interface with fluid flow in the melt. This area combines the complexities of the Navier-Stokes equations for fluid flow with the nonlinear behavior of the free boundary representing the crystal-melt interface. Some progress has been made by studying explicit flows that allow a base state corresponding to a one-dimensional crystal-melt interface with solute and/or temperature fields that depend only on the distance from the interface. This allows the strength of the interaction between the flow and the interface to be assessed by a linear stability analysis of the simple base state. The case of a time-periodic Taylor-Couette flow interacting with a cylindrical crystalline interface is currently being investigated both experimentally and theoretically; some preliminary results are given here. The results indicate that the effect of the crystal-melt interface in the two-phase system is to destabilize the system by an order of magnitude relative to the single-phase system with rigid walls.

### Keywords

Vortex Furnace Convection Assure Vorticity## Preview

Unable to display preview. Download preview PDF.

### References

- [1]D. T. J. Hurle and E. Jakeman,
*Introduction to the techniques of crystal growth*, PCH Physico Chem. Hydrodyn. 2 (1981), pp. 237–244.Google Scholar - [2]M. E. Glicksman, E. Winsa, R. C. Hahn, T. A. Lograsso, S. H. Tirmizi, and M. E. Selleck,
*Isothermal dendritic growth - a proposed microgravity experiment*, Metall. Trans. 19A (1988), pp. 1945–1953.Google Scholar - [3]R. A. Brown,
*Theory of transport processes in single crystal growth from the melt*, AIChE J. 34 (1988), pp. 881–911.CrossRefGoogle Scholar - [4]S. R. Coriell, G. B. Mcfadden and R. F. Sekerka,
*Cellular growth during directional solidification*,Ann. Rev. Mater. Sci. 15 (1985), pp. 119–145.CrossRefGoogle Scholar - [5]M. E. Glicksman, S. R. Coriell and G. B. Mcfadden,
*Interaction of flows with the crystal-melt interface*, Annu. Rev. Fluid Mech. 18 (1986), pp. 307–335.CrossRefGoogle Scholar - [6]W. W. Mullins and R. F. Sekerka,
*Stability of a planar interface during solidification of a dilute binary alloy*, J. Appl. Phys. 35 (1964), pp. 444–451.CrossRefGoogle Scholar - [7]S. R. Coriell, M. R. Cordes, W. J. Boettinger, and R. F. Sekerka,
*Convective and interfacial instabilities during unidirectional solidification of a binary alloy*, J. Crystal Growth 49 (1980), pp. 13–28.CrossRefGoogle Scholar - [8]S. R. Coriell and R. F. Sekerka,
*Effect of convective flow on morphological stability*, PCH Physico Chem. Hydrodyn. 2 (1981), pp. 281–293.Google Scholar - [9]S. H. Davis,
*Hydrodynamic interactions in directional solidification*, J. Fluid. Mech. 212 (1990) pp. 241–262.MathSciNetCrossRefGoogle Scholar - [10]R. T. Delves,
*Theory of Interface Stability*,*in**Crystal Growth*, B. R. Pamplin, ed., Pergamon, Oxford, 1974, pp. 40–103.Google Scholar - [11]S. R. Coriell, G. B. Mcfadden, R. F. Boisvert, and R. F. Sekerka,
*Effect of a forced Collette flow on coupled convective and morphological instabilities during unidirectional solidification*, J. Crystal Growth 69 (1984), pp. 15–22.CrossRefGoogle Scholar - [12]S. R. Coriell and G. B. Mcfadden,
*Buoyancy effects on morphological instability during directional solidification*,J. Crystal Growth 94 (1989), pp. 513–521.CrossRefGoogle Scholar - [13]K. Brattkus, and S. H. Davis,
*Flow induced morphological instability: stagnation point flows*, J. Crystal Growth 89 (1988), pp. 423–427.CrossRefGoogle Scholar - [14]G. B. Mcfadden, S. R. Coriell, and J. I. D. Alexander,
*Hydrodynamic*and*free boundary instabilities during crystal growth: the effect of a plane stagnation flow*, Comm. Pure and Appl. Math 41 (1988), pp. 683–706.MathSciNetMATHCrossRefGoogle Scholar - [15]K. Brattkus and S. H. Davis,
*Flow induced morphological instability: the rotating disk*, J. Crystal Growth 87 (1988), pp. 385–396.CrossRefGoogle Scholar - [16]S. A. Forth and A. A. Wheeler,
*Hydrodynamic and morphological stability of the unidirectional solidification of a freezing binary alloy: a simple model*, J. Fluid Mech. 202 (1989), pp. 339–366.MathSciNetMATHCrossRefGoogle Scholar - [17]S. H. Davis, U. Moller, and C. Dietsche,
*Pattern selection in single-component systems coupling Be’nard convection and solidification*,J. Fluid. Mech. 144 (1984) pp. 133–151.CrossRefGoogle Scholar - [18]B. Caroli, C. Caroli, C. Misbah, and B. Roulet,
*Solutal convection and morphological instability in directional solidification of binary alloys*,J. Phys. (Paris) 46 (1985), pp. 401–413.CrossRefGoogle Scholar - [19]G. W. Young and S. H. Davis,
*Directional solidification with buoyancy in systems with small segregation coefficient*, Phys. Rev. B34 (1986), pp. 3388–3396.Google Scholar - [20]G. B. Mcfadden, S. R. Coriell, R. F. Boisvert, M. E. Glicksman, and Q. T. Fang,
*Morphological stability in the presence of fluid flow in the melt*, Metall. Trans. 15A (1984), pp. 2117–2124.Google Scholar - [21]Q. T. Fang, M. E. Glicksman, S. R. Coriell, G. B. Mcfadden, and R. F. Boisvert,
*Convective influence on the stability of a crystal-melt interface*,J. Fluid Mech. 151 (1985) pp. 121–140.CrossRefGoogle Scholar - [22]G. B. Mcfadden, S. R. Coriell, M. E. Glicksman, and M. E. Selleck,
*Instability of a Taylor-Couette flow interacting with a crystal-melt interface*, PCH Physico Chem. Hydrodyn. 11 (1989), pp. 387–409.Google Scholar - [23]G. B. Mcfadden, S. R. Coriell, B. T. Murray, M. E. Glicksman, and M. E. Selleck,
*Effect of a crystal-melt interface on Taylor-vortex flow*, Phys. Fluids A 2 (1990), pp. 700–705.CrossRefGoogle Scholar - [24]G. I. Taylor,
*Stability of a viscous liquid contained between two rotating cylinders*, Phil. Trans. Roy. Soc. A 223 (1923), 289–343.Google Scholar - [25]S. Chandrasekhar,
*Hydrodynamic and Hydromagnetic Stability*, (Clarendon Press, Oxford, 1961).MATHGoogle Scholar - [26]P. G. Draztn and W. H. Reid,
*Hydrodynamic Stability*, (Cambridge University Press, New York, 1981).Google Scholar - [27]E. A. Coddington and N. Levinson,
*Theory of Ordinary Differential Equations*, (McGraw Hill, New York, 1955).Google Scholar - [28]S. Carmi and J. I. Tustaniwskyj,
*Stability of modulated finite-gap cylindrical Couette flow: linear theory*, Journal of Fluid Mech. 108 (1981) 19–42.MATHCrossRefGoogle Scholar - [29]P. Hall,
*The stability of unsteady cylinder flows*, J. Fluid Mech. 67 (1975) 29–63.MATHCrossRefGoogle Scholar - [30]G. Seminara and P. Hall,
*Centrifugal instability of a Stokes layer: linear theory*,Proc. R. Soc. Lond. A 350 (1976), 299–316.MATHCrossRefGoogle Scholar - [31]B. T. Murray, G. B. Mcfadden, and S. R. Coriell,
*Stabilization of Taylor-Couette flow due to time-periodic outer cylinder oscillation*, Phys. Fluids A, 2 (1990), 2147–2156.MATHCrossRefGoogle Scholar - [32]B. T. Murray, S. R. Coriell, and G. B. Mcfadden,
*The effect of gravity modulation on solutal convection during directional solidification*, J. Crystal Growth, in press.Google Scholar - [33]S. H. Davis,
*The stability of time-periodic flows*, Annu. Rev. Fluid Mech. 8 (1976), 57–74.CrossRefGoogle Scholar - [34]M. R. Scott and H. A. Watts,
*Computational solution of linear two-point bound-ary value problems via orthonormalization*, SIAM J. Numer. Anal. 14 (1977), 40–70.MathSciNetMATHCrossRefGoogle Scholar - [35]SLATEC Common Math Library, National Energy Software Center, Ar-gonne National Laboratory, Argonne, IL.Google Scholar
- [36]H. B. Keller,
*Numerical Solution of Two Point Boundary Value Problems*, Regional Conference Series in Applied Mathematics 24, SIAM, Philadelphia, 1976.Google Scholar - [37]The routine SNSQ is part of the SLATEC Common Math Library [35], and was written by K. L. Hiebert (1980); it is based on Powell [38].Google Scholar
- [38]M. J. D. Powell,
*in**Numerical Methods for Nonlinear Algebraic Equations*, P. Rabinowitz, ed. (Gordon and Breach, New York, 1970), pp. 87–161.Google Scholar - [39]C. Canuto, M. Y. Hussaini, A. Quarteront, and T. A. Zang,
*Spectral Methods in Fluid Mechanics*,(Springer, New York, 1988).Google Scholar - [40]D. Gottlieb, M. Y. Hussaini and S. A. Orszag,
*in Spectral Methods for Partial Differential Equations*, R. G. Voigt, D. Gottlieb, and M. Y. Hussaini, eds., (SIAM, Philadelphia, 1984) pp. 1–54.Google Scholar - [41]J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart,
*UNPACK User’s Guide*, (SIAM, Philadelphia, 1979).Google Scholar - [42]D. Kahaner, C. Moler, and S. Nash,
*Numerical Methods and Software*,(Prentice Hall, New Jersey, 1989) p. 295.MATHGoogle Scholar - [43]G. H. Golub and C. F. Van Loan,
*Matrix Computations*, 2nd Ed., (Johns Hopkins University Press, Baltimore, 1989).MATHGoogle Scholar - [44]G. B. Mcfadden, B. T. Murray, S. R. Coriell, M. E. Glicksman, and M. E. Selleck,
*Effect of a crystal-melt interface on Taylor-Couette flow with buoyancy*,*in Proceedings of the 5th International Colloquium on Free Boundary Problems: Theory and Applications*, J. Chadam, ed., held in Montreal, Canada, June 13–22, 1990.Google Scholar - [45]G. B. Mcfadden, S. R. Coriell, R. F. Boisvert, and M. E. Glicksman,
*Asymmetric instabilities in buoyancy-driven flow in a tall vertical annulus*, Phys. Fluids 27 (1984), pp. 1359–1361.CrossRefGoogle Scholar - [46]L. Quartapelle,
*Vorticity conditioning in the computation of two-dimensional viscous flows*, J. Comp. Phys. 40 (1981) pp. 453–477.MathSciNetMATHCrossRefGoogle Scholar - [47]C. R. Anderson,
*Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous incompressible flows*, J. Comp. Phys. 80 (1989) 72–97.MATHCrossRefGoogle Scholar