Lower and Upper Bound Estimates for the Macroscopic Strength Criterion of Fiber Composite Materials

  • Patrick De Buhan
  • Jean Salencon
  • Alberto Taliercio
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The formulation of a homogenization procedure within the framework of the yield design theory makes it possible to derive a strength criterion for a fiber composite material in a rigorous way, from the only definitions of the strength properties of the constituents (matrix and fibers) and of their geometrical, structural and voluminal arrangement. Making use of both yield design static and kinematic approaches, quite simple analytical lower and upper bound estimates are obtained for a unidirectional fiber composite. A detailed analysis of those estimates is carried through in the specific case when the composite is subjected to a uniaxial solicitation or to plane strain conditions parallel to the fibers direction.


Plane Strain Strength Criterion Yield Design Unidirectional Fiber Fiber Composite Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. de Buhan, P., 1986. Approche fondamentale du calcul à la rupture des ouvrages en sols renforcés. Thesis, Université Pierre et Marie Curie, Paris.Google Scholar
  2. de Buhan, P., and Salençon, J., 1987. “Yield strength of reinforced soils as anisotropic media”, IUTAM symposium on Yielding, Damage and Failure of Anisotropic Solids, Villard-de-Lans, France. J.P. Boehler ed., to appear.Google Scholar
  3. de Buhan, P., and Taliercio, A., 1988. “Critère de resistance macroscopique pour les matériaux composites à fibres”, C.R. Ac. Sc., 307, II, Paris, pp. 227–232.Google Scholar
  4. Dvorak, G.J., and Bahei-el-Din, Y.A., 1982. “Plasticity Analysis of Fibrous Composites”, Jl. Applied Mechanics, Vol. 49, pp. 327–335.CrossRefGoogle Scholar
  5. Frémond, M., and Friaá, A., 1978. Analyse limite. Comparaison des méthodes statique et cinématique, C.R. Ac. Sc., Paris, t. 286, série A, pp. 107–110.Google Scholar
  6. Marigo, J.J., Mialon, P., Michel, J.C., Suquet, P., 1987. “Plasticité et homogénéisation: un exemple de prévision des charges limites d’une structure hétérogène périodique”, J. Méca. Th. et Appl., 6, pp. 47–75.Google Scholar
  7. Salençon, J., 1983. Calcul à la rupture et analyse limite, Presses de l’E.N.P.C, Paris.Google Scholar
  8. Saurindranath, M., and Mc Laughlin, P.V., 1975. “Effects of phase geometry and volume fraction on the plane stress limit analysis of a unidirectional fiber reinforced composite”, Int. Jl. Solids Structures, Vol. 11, pp. 777–791.CrossRefGoogle Scholar
  9. Sawicki, A., 1981. “Yield conditions for layered composites”, Int. Jl. Solids and Structures, Vol. 17, pp. 969–979.CrossRefGoogle Scholar
  10. Suquet, P., 1985. “Elements of homogenization for inelastic solid mechanics”, in Homogenization techniques for composite media, C.I.S.M., Udine, Italy. Springer Verlag, pp. 193–278.Google Scholar
  11. Taliercio, A., 1989. Studio del comportamento elastico e a rottura di materiali compositi a fibre e di elementi strutturali in composito, thesis, Politecnico di Milano.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Patrick De Buhan
    • 1
  • Jean Salencon
    • 1
  • Alberto Taliercio
    • 2
  1. 1.Laboratoire de Mécanique des SolidesEcole PolytechniquePalaiseau CedexFrance
  2. 2.Dipartimento di Ingegneria StrutturalePolitecnico di MilanoMilanoItaly

Personalised recommendations