Skip to main content

Analogy Theory for a Systems Approach to Physical and Technical Systems

  • Chapter
  • 289 Accesses

Part of the book series: Advances in Simulation ((ADVS.SIMULATION,volume 5))

Abstract

Research in the use of analogies in science and technology during the last two centuries reveals that, besides the striking successes of applications of these analogies, there are also dramatic failures, not to speak of sophistic misuses, in the logic reasoning.

Searching for the reasons for success and failure forces us to lose ourselves in a mechanism of analogy-thinking that is governed by logic, this resulting in the creation of a sharp division between analogy-reasoning and analogy-application.

By realistically starting from the idea that an analogy supposes, besides similarities, also differences, it is justifiable to make use of them in systems science. In order to achieve this, in this chapter some conditions are first formulated. Next examples are given that show that the use of analogies is of good service for modeling. With the help of bond-graphs, an analogy can be critically applied, such that it can be seen visually, physically, and mathematically simultaneously and in a recognizable way. The application of algebraic topology in this field makes it possible to design a dual system from a certain original system. Finally, some rigorous conclusions are drawn and recommendations are made with respect to justified use of analogies in multidisciplinary systems approaches. With respect to engineering design, some expectations are entertained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A.R., Ed. Minds and Machines. Prentice-Hall, Englewood Cliffs, N.J., 1964.

    Google Scholar 

  2. Arbib, M.A. Brains, Machines and Mathematics. McGraw-Hill, New York, 1965.

    Google Scholar 

  3. Balasubramanian, N.V., Lynn, J.W., and Sen Gupta, O.P. Differential Forms on Electromagnetic Networks. Butterworths, London, 1970.

    MATH  Google Scholar 

  4. Barnsley, M.F. Fractals Everywhere. Academic Press, Boston, 1988.

    MATH  Google Scholar 

  5. Barnsley, M.F., and Demko, S.G. Chaotic Dynamic and Fractals. Academic Press, Boston, 1987.

    Google Scholar 

  6. Becker, K.H., and Dörfler, M. Dynamische Systeme und Fraktale. Vierweg, Braunschweig, 1989.

    Google Scholar 

  7. Bell, A., and Martens, H.R. A comparison of linear graphs and bond graphs in the modeling proces. In JACC Proceedings. 1974, pp. 777–794.

    Google Scholar 

  8. Blackett, D.W. Elementary Topology, a Combinatorial and Algebraic Approach. Academic Press, New York, 1967.

    Google Scholar 

  9. Blackwell, W.A. Mathematical Modeling of Physical Networks. MacMillan, New York, 1968.

    Google Scholar 

  10. Blundell, A. Bond Graphs for Modeling Engineering Systems. Wiley, Chichester (W. Sussex), 1982.

    Google Scholar 

  11. Bowden, K.G. An introduction to homological systems theory: Topological analysis of invariant systems zeros. Matrix Tensor Q. (1980), 36–52.

    Google Scholar 

  12. Branin, F.H. The Algebraic-Topological Basis for Network Analogies and the Vector Calculus, Symposium on Generalized Networks. Brooklyn Polytechnic Institute, Apr. 1966, pp. 453–491.

    Google Scholar 

  13. Breedveld, P.C. Physical systems theory in terms of bond graphs. Ph.D. thesis, Univ. of Twente, The Netherlands, 1984.

    Google Scholar 

  14. Bryant, P.R. The algebra and topology of electrical networks. In Proceedings of I.E.E., Vol. 108c. 1961, p. 215.

    Google Scholar 

  15. Cairns, S.S. Introductory Topology. The Ronald Press Co., New York, 1961.

    MATH  Google Scholar 

  16. Church, A. Introduction to Mathematic Logic. Princeton University Press, Princeton, N.J., 1956.

    Google Scholar 

  17. Curtis, W.D., and Millar, F.R. Differential Manifolds and Theoretical Physics. Academic Press, Orlando, Fla.; Orlando, 1985.

    MATH  Google Scholar 

  18. De Froe. Filosofische Oriëntering in de Natuurwetenschappen (in Dutch). Aulabooks no 347, Het Spectrum, Utrecht, 1967.

    Google Scholar 

  19. Dixhoorn, J.J., and Evans, F.J. Physical Structure in Systems Theory. Academic Press, London, 1974.

    MATH  Google Scholar 

  20. Elliott, J.P., and Dawber, P.G. Principles and Simple Applications Symmetry in Physics (two parts). Macmillan Press, London, 1979.

    Google Scholar 

  21. Feynman, R. The Character of Physical Law. MIT Press, Cambridge, Mass., 1965.

    Google Scholar 

  22. Firestone, F.A. A new Analogy between mechanical and electrical systems. J. Acoustical Soc. 4 (Jan. 1933), 249–267.

    Article  Google Scholar 

  23. Franz, W. Topologie. Part 2: Algebraische Topologie, Sammlung Göschen Band 1182. Walter de Gruyter, Berlin, 1965.

    Google Scholar 

  24. Fushchick, W.I., and Nikitin, A.G. Symmetries of Maxwell’s equations. Reidel, Dordrecht, 1987.

    Book  Google Scholar 

  25. Gleick, J. Chaos, Making a New Science. Penguin Books, New York, 1987.

    MATH  Google Scholar 

  26. Gödel, K. Über Formal Unentscheidbare Sättze der Principia Mathematica und Verwandter Systeme, I (Part II has not appeared). Monatshefte für Mathematik und Physik, Vol. 38, (1931), pp. 173–198. This is now available in an English translation; see Gödel, K., On Formally Undecidable Propositions of Principia Mathematica and Related Systems. Translated by B. Meltzer, with an introduction by R.B. Braithwaite. Basic Books, Inc., Publishers, New York, 1962.

    Google Scholar 

  27. Green, M.B., Schwarz, J.H., and Witten, E. Superstring Theory. Vol. I and II. Cambridge Monographs on Mathematical Physics, Cambridge University Press, New York, 1987.

    MATH  Google Scholar 

  28. Harary, F. Graph Theory and Theoretical Physics. Academic Press, London, 1967.

    MATH  Google Scholar 

  29. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass., 1972.

    Google Scholar 

  30. Hargittai, I., Ed. Symmetry, Unifying Human Understanding. Pergamon Press, New York, 1986.

    MATH  Google Scholar 

  31. Hesse, M.B. Models and Analogies. University of Notre Dame Press, Notre Dame, Indi., 1966.

    Google Scholar 

  32. Hezemans, P.M.A.L. Introduction to Systemengineering (in Dutch). Lecture Notes. Eindhoven University of Technology, Eindhoven, 1979.

    Google Scholar 

  33. Hezemans, P.M.A.L. Systemengineering for the Power Transmissions (in Dutch). Lecture Notes. Eindhoven University of Technology, Eindhoven, 1985.

    Google Scholar 

  34. Hezemans, P.M.A.L. Gestructureerde Aanpak Systeemanalyse, Modelvorming en Simulation (in Dutch). Aandrijftechniek, 1987–1988.

    Google Scholar 

  35. Hilton, P. Lecture in Homological Algebra. American Mathematical Society, Providence, R.I., 1971.

    Google Scholar 

  36. Hilton, P. General Cohomology Theory and K-Theory. Cambridge University Press, London, 1971.

    Google Scholar 

  37. Hilton, P.J., and Wylie, S. Homology Theory, An Introduction to Algebraic Topology. Cambridge University Press, London, 1960.

    Book  MATH  Google Scholar 

  38. Hofstadter, D.R. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, New York, 1979.

    Google Scholar 

  39. Hu, S.T. Homology Theory. Holden-Day Inc., San Francisco, 1966.

    MATH  Google Scholar 

  40. Jones, A, Gray, A., and Hutton, R. Manifolds and Mechanics. Cambridge University Press, Cambridge, London, 1987.

    Book  MATH  Google Scholar 

  41. Karnopp, D., and Rosenberg, R. Systems Dynamics, A Unified Approach. Wiley, New York, 1971.

    Google Scholar 

  42. Karnopp, D., and Rosenberg, R.C. Rosenberg, Analysis and Simulation of Multiport Systems, The Bondgraph Approach to Physical System Dynamics. MIT Press, Cambridge, Mass., 1968.

    Google Scholar 

  43. Karunakaran, T., and Satsangi, P.S. On the identity between power invariance and topological invariance. Matrix Tensor Q. (June 1970), 124–127.

    Google Scholar 

  44. Klein, F. Vergleichende Betrachtungen über neuere geometrische Forschungen. Mathemaische Annalen 43 (1893), 63–100.

    Article  Google Scholar 

  45. Kron, G. Tensor Analysis of Networks. Wiley, New York, 1939.

    Google Scholar 

  46. Kron, G. Diakoptics. MacDonald, London, 1963.

    Google Scholar 

  47. Lindsay, R.B., and Margenau, H. Foundations of Physics. Dover publications, New York, 1957.

    Google Scholar 

  48. Lorrain, P., and Corson, D.R. Electromagnetism. Freeman, San Francisco, 1979.

    Google Scholar 

  49. Lucas, J.R. Minds, machines and Gödel. Philosophy 36 (1961), 112; reprinted in [1].

    Article  Google Scholar 

  50. MacFarlane, A.G.J. Engineering Analysis. Harrap, London, 1964.

    Google Scholar 

  51. MacFarlane, A.G.J. Dynamical System Models. Harrap, London, 1970.

    MATH  Google Scholar 

  52. Mandelbrot, B.B. Fractals: Form, Chance, and Dimension. Freeman and Co. New York, 1977.

    MATH  Google Scholar 

  53. Mandelbrot, B.B. The Fractal Geometry of Nature. Freeman, New York, 1983.

    Google Scholar 

  54. Massey, W.S. Singular Homology Theory. Springer-Verlag, New York, 1980.

    MATH  Google Scholar 

  55. Maxwell, J.C. Are there real analogies in nature? In The Life of James Clerk Maxwell, L. Campbell and W. Garnett. Johnson Reprint Corporation, New York, 1969.

    Google Scholar 

  56. Murphy, G., Shippy, D.J., and Luo, H.L. Engineering Analogies. Iowa State University Press, Ames, Iowa, 1963.

    Google Scholar 

  57. Nagel, E., and Newman, J.R. Gödel’s Proof New York University Press, New York, 1958.

    MATH  Google Scholar 

  58. Nicholson, H. Structure of Interconnected Systems. Peter Peregrinus (IEE), 1978.

    Google Scholar 

  59. Nussbaum, A. Applied Group Theory for Chemists, Physicists and Engineers. Prentice-Hall, Englewood Cliffs, N.J., 1971.

    Google Scholar 

  60. Ore, O. Graphs and Their Uses. Random House, New York, 1963.

    MATH  Google Scholar 

  61. Ort, J.R., and Martens, H.R. A topological procedure for converting a bond graph to a linear graph. J. Dynamic Syst., Measurement, Control ASME (Sept. 1974), 307–314.

    Google Scholar 

  62. Page, L., and Adams, N.I. Electrodynamics. Van Nostrand, New York, 1940.

    MATH  Google Scholar 

  63. Penfield, P., Spence, R., and Duinker, S. Tellegen’s Theorem and Electrical Networks. Research Monograph 58. MIT Press, Cambridge, Mass., 1970.

    Google Scholar 

  64. Pierce, J.R. Symbols, Signals and Noise. Harper and Brothers, New York, 1961.

    Google Scholar 

  65. Pietronero, L., and Tosatti, E. Fractals in Physics. North-Holland, Amsterdam, 1986.

    Google Scholar 

  66. Poincaré, H. Science and Hypothesis. Dover Publications, New York, 1952.

    MATH  Google Scholar 

  67. Rosen, J. Symmetry Discovered: Concepts and Applications in Nature and Science. Cambridge University Press, Cambridge Mass., 1975.

    MATH  Google Scholar 

  68. Rosen, J. A Symmetry Primer for Scientists. Wiley-Interscience, New York, 1983.

    Google Scholar 

  69. Rosenberg, R.C., and Karnopp, D.C. Introduction to Physical System Dynamics. McGraw-Hill, New York, 1983.

    Google Scholar 

  70. Roth, J.P. An application of algebraic topology to numerical analysis: On the existence of a solution to the network problem. In Proceedings of the National Academy of Science, Vol. 41. 1955, pp. 518–521.

    Article  MATH  Google Scholar 

  71. Salzer, C. Quart. Appl. Maths, Vol. II. 1953, p. 119.

    Google Scholar 

  72. Seely, S. Dynamic Systems Analysis. Reinhold Publishing Corporation, New York 1964.

    Google Scholar 

  73. Shearer, J.L., Murphy, A.T., and Richardson, H.H. Introduction to Systemdynamics. Addison-Wesley, Reading, Mass., 1967.

    Google Scholar 

  74. Strang, G. A framework for equilibrium equations. SIAM Rev. 30, 2 (June 1988), 283–297.

    Article  MathSciNet  MATH  Google Scholar 

  75. Swamy, M.N.S., and Thulasiraman, K. Graphs, Networks and Algorithms. Wiley-Interscience, New York, 1981.

    MATH  Google Scholar 

  76. Tarski, A. Logics, Semantics, Metamathematics, Papers from 1923 to 1938. Oxford University Press, New York, 1956.

    Google Scholar 

  77. Tellegen, B.D.H. A general network theorem, with applications. Philips Res. Reps. 7, 4 (Aug. 1952), 259–269.

    MathSciNet  MATH  Google Scholar 

  78. Thoma, J. Introduction to Bond Graphs and Their Applications. Pergamon Press, Oxford, 1979.

    Google Scholar 

  79. Tonti, E. On the Mathematical Structure of a Large Class of Physical Theories. Rend. Acc. Lincei, Vol. VII, 1972, pp. 48–56.

    MathSciNet  Google Scholar 

  80. Tonti, E. A Mathematical Model for Physical Theories. Rend. Acc. Lincei, Vol. VII, 1972, First part pp. 175–181, second part pp. 350–356.

    MathSciNet  Google Scholar 

  81. Tonti, E. On the Mathematical Structure of Physical Theories. Quaderno del Consiglio Nazionale delle Ricerche, 1975.

    Google Scholar 

  82. Tonti, E. On the Formal Structure of Physical Theories. Quad. di Gruppi di Ricerca Matematica, Instituto di Matematica del Politecnico, Milano, 1975.

    Google Scholar 

  83. Tonti, E. The reason for analogies between physical theories. Appl. Math. Modelling 1 (June 1976), 37–50.

    Article  MathSciNet  Google Scholar 

  84. Trent, M.T. Isomorphisms between oriented linear graphs and lumped physical systems. J. Acoustical Soc. Am. 27 (May 1955), 500–527.

    Article  MathSciNet  Google Scholar 

  85. Turner, J. Maxwell on the method of physical analogy. British J. Philos. 6 (1955), 226–238.

    Article  Google Scholar 

  86. Veblen, O. Analysis Situs. American Mathematical Society, Providence, 1931.

    Google Scholar 

  87. Wangsness, R.K. Electromagnetic Fields. Wiley, New York, 1979.

    Google Scholar 

  88. Wellstead, P.E. Introduction to Physical System Modelling. Academic Press, London, 1979.

    Google Scholar 

  89. Weyl, H. Symmetry. Princeton University Press, Princeton, N.J. 1952.

    MATH  Google Scholar 

  90. Whitney, E. Non-separable and planar graphs. Trans. Am. Math. Soc. 34 (1932), 339–362.

    Article  MathSciNet  Google Scholar 

  91. Woodcock, A.E.R., and Poston, T. A Geometrical Study of Elementary Catastrophes. Springer-Verlag, New York, 1974.

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Hezemans, P.M.A.L., van Geffen, L.C.M.M. (1991). Analogy Theory for a Systems Approach to Physical and Technical Systems. In: Fishwick, P.A., Luker, P.A. (eds) Qualitative Simulation Modeling and Analysis. Advances in Simulation, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9072-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9072-5_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97400-2

  • Online ISBN: 978-1-4613-9072-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics