Skip to main content

Numerical Simulation of Inertial Viscoelastic Flow with Change of Type

  • Conference paper
Nonlinear Evolution Equations That Change Type

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 27))

Summary

We examine plane inertial flows of viscoelastic fluids with an instantaneous elastic response. In such flows, the vorticity equation can change type when the velocity of the fluid exceeds the speed of shear waves. We use a finite element algorithm which has been developed for calculating highly viscoelastic flows.

The algorithm is tested for supercritical flow regimes on the problem of the flow through a wavy channel. We next consider the problem of the flow of a Maxwell fluid around a circular cylinder for various flow regimes. We compare creeping flows, Newtonian flows and supercritical viscoelastic flows. We show that the flow kinematics is affected by supercritical flow conditions. In particular, a vorticity shock forms ahead of the cylindrical body.

The work of V. Delvaux is supported by the “Service de Programmation de la Politique Scientifique”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.M. Rutkevich, The propagation of small perturbations in a viscoelastic fluid, J. Appl Math. Mech., 34 (1970), 35–50.

    Article  MathSciNet  MATH  Google Scholar 

  2. I.M. Rutkevich, On the thermodynamic interpretation of the evolutionary conditions of the equation of the mechanics of finitely deformable viscoelastic media of Maxwell type J. Appl. Math. Mech., 36 (1972), 283–295.

    Article  MATH  Google Scholar 

  3. D.D. Joseph, M. Renardy and J.C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Ration. Mech. Anal., 87 (1985), 213–251.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.D. Joseph and J.C. Saut, Change of type and loss of evolution in the flow of viscoelastic fluids, J. Non-Newtonian Fluid Mech., 20 (1986), 117–141.

    Article  MATH  Google Scholar 

  5. F. Dupret and J. M. Marchal, Sur le signe des valeurs propres du tenseur d’extra-con traintes dans un écoulement de fluide de Maxwell, J. de Mécanique théorique et appliquée, 5 (1986) 403–427.

    MATH  Google Scholar 

  6. F. Dupret and J.M. Marchal, Loss of evolution in the flow of viscoelastic fluids J. Non-Newtonian Fluid Mech., 20 (1986), 143–171.

    Article  MATH  Google Scholar 

  7. A.B. Metzner, E.A. Uebler and C.F.C.M. Fong, Converging flows of viscoelastic materials, Am. Inst. Ch. Eng. J., 15 (1969), 750–758.

    Google Scholar 

  8. D.D. Joseph, J.E. Matta and K. Chen, Delayed die swell, J. Non-Newtonian Fluid Mech 24 (1987), 31–65.

    Article  Google Scholar 

  9. D.F. James and A.J. Acosta, The laminar flow of dilute polymer solutions around circular cylinders, J. Fluid Mech., 42 (1970), 269–288.

    Article  Google Scholar 

  10. J.S. Ultman and M.M. Denn, Anomalous heat transfer and a wave phenomenon in dilute polymer solutions, Trans. Soc. Rheol., 14 (1970), 307–317.

    Article  Google Scholar 

  11. D.D. Joseph, Fluid dynamics of viscoelastic liquids, Springer-Verlag (1989).

    Google Scholar 

  12. M.J. Crochet, Numerical simulation of viscoelastic Row: A review, Rubber Chemistry and Technology — Rubber Reviews for 1989.

    Google Scholar 

  13. R. Keunings, Simulation of viscoelastic flow, in C.L. Tucker III (ed). Fundamentals of computer modeling for polymer processing (1988).

    Google Scholar 

  14. F. Dupret, J.M. Marchal and M.J. Crochet, On the consequence of discretization err in the numerical calculation of viscoelastic flow, J. Non-Newtonian Fluid Mech. 18 (1985) 173–186.

    Article  MATH  Google Scholar 

  15. R.A. Brown, R.C. Armstrong, A.N. Beris and P.W. Yeh, Galerkin finite element analysis of complex viscoelastic flows, Comp. Meth. Appl. Mech. Eng., 58 (1986), 201–226

    Article  MATH  Google Scholar 

  16. J.H. Song and J.Y. Yoo, Numerical simulation of viscoelastic flow through sudden traction using type dependent method, J. Non-Newtonian Fluid Mech., 24 (1987) 221–243

    Article  MATH  Google Scholar 

  17. R.E. Gaidos and R. Darby, Numerical simulation and change in type in the developing flow of a non linear viscoelastic fluid, J. Non-Newtonian Fluid Mech., 29 (1988) 59–79.

    Article  MATH  Google Scholar 

  18. J.M. Marchal and M.J. Crochet, A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26 (1987) 77–114.

    Article  MATH  Google Scholar 

  19. M.J. Crochet, V. Delvaux and J.M. Marchal, On the convergence of the streamline-upwind mixed unite element, J. Non-Newtonian Fluid Mech., submitted (1989).

    Google Scholar 

  20. J.Y. Yoo and D.D. Joseph, Hyperbolicity and change of type in the flow of viscoelastic fluids through channels, J. Non-Newtonian Fluid Mech., 19 (1985) 15–41.

    Article  MATH  Google Scholar 

  21. M.J. Crochet, A.R. Davies and K. Walters, Numerical simulation of Non-Newtonian flow, Elsevier, Amsterdam (1984).

    MATH  Google Scholar 

  22. I. Babuska, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973) 179–192.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, Rairo Num. Analysis, 8-R2 (1974), 129–151.

    MathSciNet  Google Scholar 

  24. M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, to appear in Com. Meth. Appl. Mech. Eng. (1989).

    Google Scholar 

  25. A.N. Brooks and T.J.R. Hughes, Streamline-upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comp. Meth. Appl. Mech. Eng., 32 (1982) 199–259.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Delvaux and M.J. Crochet, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Crochet, M.J., Delvaux, V. (1990). Numerical Simulation of Inertial Viscoelastic Flow with Change of Type. In: Keyfitz, B.L., Shearer, M. (eds) Nonlinear Evolution Equations That Change Type. The IMA Volumes in Mathematics and Its Applications, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9049-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9049-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9051-0

  • Online ISBN: 978-1-4613-9049-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics