The Chaos Game

  • Heinz-Otto Peitgen
  • Hartmut Jürgens
  • Dietmar Saupe
  • Evan Maletsky
  • Terry Perciante
  • Lee Yunker

Abstract

The activities in this unit connect the chaos game to the Sierpinski triangle. Trees are used to tie addresses for finite sequences of plays in the chaos game to addresses for locations of subtriangles in related stages of the Sierpinski triangle. Infinite strings are eventually considered, and the Cantor set is related to fully grown trees.

Keywords

Dust 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Heinz-Otto Peitgen
    • 1
    • 2
  • Hartmut Jürgens
    • 1
  • Dietmar Saupe
    • 1
  • Evan Maletsky
    • 3
  • Terry Perciante
    • 4
  • Lee Yunker
    • 5
  1. 1.Institut für Dynamische SystemeUniversität BremenBremen 33Federal Republic of Germany
  2. 2.Department of MathematicsUniversity of CaliforniaSanta CruzUSA
  3. 3.Department of Mathematics and Computer ScienceMontclair State CollegeUpper MontclairUSA
  4. 4.Department of MathematicsWheaton CollegeWheatonUSA
  5. 5.Department of MathematicsWest Chicago Community High SchoolWest ChicagoUSA

Personalised recommendations