Advertisement

Painlevé Equations and the Inverse Scattering and Inverse Monodromy Transforms

  • Mark J. Ablowitz
Conference paper
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 25)

Abstract

The connection of the classical Painlevé equations with certain nonlinear evolution equations, special solutions, and linearization procedures via the Inverse Scattering and Inverse Monodromy Transform is discussed.

Keywords

Singular Point Inverse Scattering Nonlinear Evolution Equation Fredholm Integral Equation Partial Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [la]
    E.L. Ince, Ordinary Differential Equations, ( 1927 ), Dover, NY (1956).Google Scholar
  2. [lb]
    R. Fuchs, Sitz. Akad. Wiss. Berlin, 32, 699 (1884).Google Scholar
  3. [2]
    V.V. Golubov, Lectures on Integration of the Equations of Motion of a Rigid Body About a Fixed Point, State Pub. House, Moscow, transi. by J. Shorr-kon, reproduced by NTIS, Springfield, VA (1953).Google Scholar
  4. [3]
    E. Hille, Ordinary Differential Equations in the Complex Domain, John Wiley, NY (1976).zbMATHGoogle Scholar
  5. [4a]
    M.J. Ablowitz, H. Secur, Phys. Rev. Lett. 38, 1103 (1977).MathSciNetADSCrossRefGoogle Scholar
  6. [4b]
    M.J. Ablowitz, A. Ramani, H. Secur, Lett. Nuovo Cimento 23, 333 (1978).MathSciNetCrossRefGoogle Scholar
  7. [4c]
    M.J. Ablowitz, A. Ramant, H. Secur, J. Math. Phys. 21, 715 (1980).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [4d]
    M.J. Ablowitz, A. Ramani, H. Segue, J. Math. Phys. 21, 1006 (1980).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [5]
    A. Ramani, B. Grammaticos and T. Bountis, The Painlevé Property and Singularity Analysis of Integrable and Non-Integrable Systems, Preprint (1988).Google Scholar
  10. [6]
    M. D. Kruskal, private communication.Google Scholar
  11. [7]
    M. Weiss, M. Tabor and J. Carnevale, J. Math. Phys. 24, 522 (1973).MathSciNetADSCrossRefGoogle Scholar
  12. [8a]
    N.A. Erugin, Dokl. Akad. Nark. BSSR 2 (1958).Google Scholar
  13. [8b]
    N.A. Lukashevich, Diff. Uray., 3, 994 (1967).Google Scholar
  14. [8c]
    N.A. Lukashevich, Diff. Uray., 1, 731 (1965).zbMATHGoogle Scholar
  15. [8d]
    V.I. Gromak, Diff. Uray., 12, 740 ( 1976.MathSciNetzbMATHGoogle Scholar
  16. [8e]
    N.A. Lukashevich and A.I. Yoblonskii, Diff. Uray., 3, 264 (1967).zbMATHGoogle Scholar
  17. [8f]
    A.S. Foras and M.J. Ablowitz, J. Math. Phys., 23, 2033 (1982).MathSciNetADSCrossRefGoogle Scholar
  18. [8g]
    N.A. Lukashevich, Diff. Uray., 7, 1124 (1971).zbMATHGoogle Scholar
  19. [8h]
    V.I. Gromak, Diff. Uray., 14, 2131 (1978).MathSciNetGoogle Scholar
  20. [8i]
    N.A. Lukashevich, Diff. Uray., 3, 771 (1967).zbMATHGoogle Scholar
  21. [8j]
    V.I. Gromak, Diff. Eq’s. 11, 285 (1975).MathSciNetGoogle Scholar
  22. [9]
    M.J. Ablowitz, H. Segue, SIAM Stud. Appl. Math. (Studies 4 ) (1981).Google Scholar
  23. [10a]
    M.G. Krein Usp, Mat. Nauk. 13, 3 (1958).Google Scholar
  24. [1013]
    I. Gouberg, M.G. Krein, Usp. Mat. Nauk, 13, 2 (1958).Google Scholar
  25. [11]
    R. Beals, R. Coifman, Commun. Pure and Applied Math, 87, 39–90 (1984).MathSciNetCrossRefGoogle Scholar
  26. [12]
    H. Segur and M.J. Ablowitz, Proc. Joint US-USSR Symposium on Soliton Theory, Kiev (1979), V.E. Zakharov and S.V. Manakov, eds., North-Holland, Amsterdam, pp. 165–184, Physica 3D (1981), pp. 165–184.Google Scholar
  27. [13a]
    S.P. Hastings and J.B. Mcleod, Arch. Rat. Mech. Anal., 73 (1980), pp. 31–51.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [13b]
    P.A. Clarkson and J.B. Mcleod, A Connection Formula for the Second Painlevé Transcendent, to appear Arch. Rat. Mech. Anal. preprint (1988).Google Scholar
  29. [14a]
    B. McCoy and S. Tang, Physica 18D (1986), pp. 180–196.MathSciNetGoogle Scholar
  30. [14b]
    B. McCoy and S. Tang, Physica 19D (1986), pp. 42–72.MathSciNetzbMATHGoogle Scholar
  31. [14c]
    B. McCoy and S. Tang, Physica 20D (1986), pp. 187–216.MathSciNetzbMATHGoogle Scholar
  32. [15]
    B.M. McCoy C.A. Tracy and T.T. Wu, J. Math. Phys., 18, 1058–1092 (1977).MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. [16]
    H. Flaschka and A.C. Newell, Commun. Math. Phys. 76, 67 (1980).MathSciNetADSCrossRefGoogle Scholar
  34. [17a]
    R. Fuchs, Math. Ann. 63, 301–321 (1907).MathSciNetzbMATHCrossRefGoogle Scholar
  35. [17b]
    R. Garnier, Ann. Sci. Ec. Norm. Super 29, 1–126 (1912).MathSciNetGoogle Scholar
  36. [18]
    A.S. Foxas and M.J. Ablowitz, Commun. Math. Phys., 91, 381 (1983).ADSCrossRefGoogle Scholar
  37. [19a]
    M. Jimbo, T. Miwa and K. Ueno, Physica 2D, 306 (1981).MathSciNetzbMATHGoogle Scholar
  38. [19b]
    M. Jimbo, and T. Miwa, Physica 2D, 407 (1981); 4D, 47 (1981).MathSciNetGoogle Scholar
  39. [20a]
    A.S. Fokas, U. Mugan and M.J. Ablowitz, Physica D. 30 (1988), 247–283.MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. [20b]
    U. Mugan, Doctoral Thesis On the initial value problem of some Painlevé equations, Clarkson University, Dec. (1986).Google Scholar
  41. [21a]
    F.D. Gakhov, Boundary Value Problems, Pergamon, New York (1966).zbMATHGoogle Scholar
  42. [21b]
    N.I. Mushkelishvili, Singular Integral Equations, Noordhoff, Groningen, (1953).Google Scholar
  43. [21c]
    N.P. Vekua, Systems of Singular Integral Equations, Gordon and Breach, New York, (1967).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Mark J. Ablowitz
    • 1
  1. 1.Program in Applied MathematicsUniversity of Colorado at BoulderUSA

Personalised recommendations