Skip to main content

Modeling Musculoskeletal Movement Systems: Joint and Body Segmental Dynamics, Musculoskeletal Actuation, and Neuromuscular Control

  • Chapter
Multiple Muscle Systems

Abstract

It is doubtful that anyone would argue that biological motor control systems are less complex than robots. Given that modeling and designing robotic control systems that can walk or manipulate objects is quite challenging to engineers [e.g. (Lee, 1989)], is there any hope for those of us who wish to develop “adequate” models of biological motor control systems? The answer depends on the definition of “adequate”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R.M. and Vemon (1975) The dimensions of the knee and ankle muscles and the forces they exert. J. Human Movem. Stud., 1: 115–123.

    Google Scholar 

  • An, K.N., Kwak, B.M., Chao, E.Y. and Morrey, B.F. (1984) Determination of muscle and joint forces: a new technique to solve the indeterminate problem. Trans. of the ASME, 106: 364.

    CAS  Google Scholar 

  • Athans M. and Falb, P.L. (1966) Optimal control: an introduction to the theory and its application. McGraw-Hill, New York.

    Google Scholar 

  • Baldissera, F., Hultborn, H. and Illert, M. (1981) Integration in Spinal Neuronal Systems. The Nervous System, Vol. II, Sect. I: Handbook of Physiology. (Edited by Brooks, V.B.), pp. 509–595, American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Bobbert, M.F., Huijing, P.A. and van Ingen Schenau, G.J. (1986) A model of the human triceps surae muscle-tendon complex applied to jumping. J. Biomech. 19: 887–898.

    Article  CAS  PubMed  Google Scholar 

  • Brand, R.A., Crowninshield, R.D., Wittstock, C.E., Pederson, D.R., Clark, C.R. and van Krieken, F.M. (1982) A model of lower extremity muscular anatomy. J. Biomech. Engng. 104: 304–310.

    Article  CAS  Google Scholar 

  • Cannon, S.C. and Zahalak, G.I. (1982) The mechanical behavior of active human skeletal muscle in small oscillations. J. Biomech. 15: 111.

    Article  CAS  PubMed  Google Scholar 

  • Chao, E.Y.S. (1986) Biomechanics of the human gait. In Frontiers in Biomechanics, edited by Schmid- Schonbein, G.W., Woo, S.L.Y., and Zweifach, B.W., pp. 225–244, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Chao, E.Y.S. and An, K.N. (1978) Determination of internal forces in human hand. J. Eng. Mech. Div 104: 255.

    Google Scholar 

  • Chapman, A. E. (1985) The mechanical properties of human muscle. Exercise and Sport Sciences Reviews (Edited by Teijung, R. L.), Vol. 13, pp. 443–501. Macmillan Publishing Company, New York.

    Google Scholar 

  • Crowninshield, D. (1978) Use of optimization techniques to predict muscle forces. J. Biomech. Engng., 100: 88–92.

    Article  Google Scholar 

  • Crowinshield, D. and Brand, R. (1981) A physiologically based criterion of muscle force prediction in locomotion. J. Biomech., 14: 793.

    Article  Google Scholar 

  • Dul, J., Johnson, G.E., Shiavi, R. and Townsend, M.A. (1984) Muscular synergism II: A minimum-fatigue criterion for load-sharing between synergistic muscles. J. Biomech., 17: 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Fuller, J.J. and Winters, J.M. (1987) Estimated joint loading during exercises recommended by the arthritis foundation. Advances in Bioengineering, ASME Winter Ann. Meeting, BED-8: 159–162.

    Google Scholar 

  • Gordon, M.E., Zajac, F.E., Khang, G. and Loan, J.P. (1988) Intersegmental and mass center accelerations induced by lower extremity muscles: Theory and methodology with emphasis on quasi-vertical standing postures. In Computat. Meth. in Bioengng, edited by Spilker, R.L., Simon, B.R.), BED-9:481–492, Amer. Soc. Mech. Eng., New York.

    Google Scholar 

  • Grillner, S. (1981) Control of locomotion in bipeds, tetrapods, and fish. The Nervous System, Vol. II, Sect. I: Handbook of Physiology. (Edited by Brooks, V.B.), pp. 1179–1236, American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Hasan, Z. (1983) A model of spindle afferent response to muscle stretch. J. Neurophys., 49: 989–1006.

    CAS  Google Scholar 

  • Hasan, Z., Enoka, R.M. and Stewart, D.G. (1983) The interaction between biomechanics and neurophysiology in the study of movement: some recent approaches. Exer. amp; Sport Sci. Rev., 13:.

    Google Scholar 

  • Hatze H. (1980a) Neuromusculoskeletal control systems modeling - A critical survey of recent developments. IEEE Trans. Auto. Control, AC-25: 375–385.

    Google Scholar 

  • Hatze, H. (1980b) A mathematical model for the computational determination of parameter values of anthropometric segments. J. Biomech. 13: 833–843.

    Article  CAS  PubMed  Google Scholar 

  • Hatze, H. (1981) Myocybernetic control models of skeletal muscle. Univ. S. Africa.

    Google Scholar 

  • Herzog, W. (1987a) Considerations for predicting individual muscle forces in athletic movements. Int. J. Sport Biomech. 3: 128–141.

    Google Scholar 

  • Herzog, W. (1987b) Individual muscle force estimations using a non-linear optimal design. J. Neurosci. Meth. 21: 167–179.

    Article  CAS  Google Scholar 

  • Hill, A.V. (1938) The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc., 126B: 136–195.

    Article  Google Scholar 

  • Hill, A.V. (1970) First and last experiments in muscle mechanics. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Hof, A.L. and van den Berg, J.W. (1981) EMG to force processing I: an electrical analogue of the Hill muscle model. J. Biomech. 14: 747–758.

    Article  CAS  PubMed  Google Scholar 

  • Hof, A.L., Geelen, B.A. and van den Berg, J.W. (1983) Calf muscle moment, work and efficiency in level walking; role of series elasticity. J. Biomech. 16: 523–537.

    Article  CAS  PubMed  Google Scholar 

  • Hollerbach, J.M. and Flash, T. (1982) Dynamic interactions between limb segments during planar arm movement. Biol. Cybern. 44: 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Hoy, M.G., Zajac, F.E. and Gordon, M.E. (1990) A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomechanics 23: 157–169.

    Article  CAS  Google Scholar 

  • Jensen, R.K. (1989) Changes in segment inertia proportions between 4 and 20 years. J. Biomech. 22: 529–536.

    Article  CAS  PubMed  Google Scholar 

  • Kane, T.R. and Levinson, D. A. (1985) Dynamics: Theory and Applications. McGraw-Hill, New York.

    Google Scholar 

  • Komi, P. V. and Norman, R. W. (1987) Preloading of the thrust phase in cross- country skiing. Int. J. Sports Med., 8: (Suppl. 1), 48–54.

    Article  PubMed  Google Scholar 

  • Komi, P.V., Salonen, M., J__rvinen, M. and Kokko, O. (1987) In vivo registration of achilles tendon forces in man I. Methodological development. Int. J. Sports Med. 8: 3–8.

    Article  PubMed  Google Scholar 

  • Lee, C.S.G. (1989) Special Issue on Robot Manipulators: Algorithms and Architectures. IEEE Trans. Robotics and Automation, RA-5: 541–710.

    Google Scholar 

  • Loeb, G. (1984) The control and responses of mammalian muscle spindles during normally executed motor tasks. Exer. amp; Sprot. Sci. Rev., 12: 157–204.

    CAS  Google Scholar 

  • Morrison (1970) The mechanics of the knee joint in relation to walking. J. Biomech., 3: 51–61.

    Article  CAS  PubMed  Google Scholar 

  • Norman, R.W. and Komi, R.V. (1979) Electromechanical delay in skeletal muscle under normal movement conditions. Acta. Physiol. Scand. 106: 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Oguztorelli, M.N. and Stein, R.B. (1983) Analysis of a model for antagonistic muscles. Biol. Cybern., 45: 177–186.

    Article  Google Scholar 

  • Pandy, M.G., Zajac, F.E., Sim, E., and Levine, W.S. (1990) An optimal control model for maximum- height human jumping. J. Biomechanics (accepted).

    Google Scholar 

  • Pandy, M.G. and Zajac, F.E. (1990) Optimal muscular coordination strategies for jumping. J. Biomechanics (accepted).

    Google Scholar 

  • Paul, J.P. (1965) Bio-Engineering studies of the forces transmitted by joints: I. Engineering analysis. In: Bimechanics and Related Bio-Engineering Topics., ed: Kenedi, R.M., Pergamon Press, Oxford.

    Google Scholar 

  • Pedotti, A., Krishnan, V.V. and Stark, L. (1978) Optimization of muscle-force sequencing in human locomotion. Math. Biosci., 38: 57–76.

    Article  Google Scholar 

  • Pellionisz, A. (1988) Tensorial aspects of the multidimensional massively parallel sensorimotor function of neuronal networks. Progress in Brain Research. (Edited by Pompeiano, O. and Allum, J.H.J.), vol. 76, 341–354, Elsevier Science Publ., Amsterdam.

    Google Scholar 

  • Robinson, D.A. (1982) The use of matrices in analyzing the three-dimensional behavior of the vestíbulo- ocular reflex. Biol. Cybem. 46, 53–66.

    Article  CAS  Google Scholar 

  • Schaehter and Levinson (1988) Interactive computerized symbolic dynamics for the dynamicist. J. Astronautical Sci. 36, 365–388.

    Google Scholar 

  • Seireg and Arvikar (1975) The prediction of muscular load sharing and joint forces in the lower extremities during walking. J. Biomech., 8: 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Seireg, A. and Arvikar, R. (1989) Biomechanical analysis of musculoskeletal structure for medicine and sports. Hemisphere Publ. Co., New York.

    Google Scholar 

  • Sim, E. (1988) The application of optimal control theory for analysis of human jumping and pedaling. Ph.D. Thesis, University of Maryland, College Park, MD.

    Google Scholar 

  • Stein, R.B., Oguztoreli, M.N. and Capaday, C. (1986) What is optimized in muscular movements? Human Muscle Power (Edited by Jones, N.L., McCartney, N. and McComas, A.J.), pp. 131–150, Human Kinetics, Champaign, IL.

    Google Scholar 

  • Walker, M.W. and Orin, D.E. (1982) Efficient dynamic computer simulation of robotic mechanisms. ASME J. Dynam. Sys., Meas. amp; Control, 104: 205–211.

    Article  Google Scholar 

  • Winters, J.M. (1985) Generalized analysis and design of antagonistic muscle models: effect of nonlinear properties on the control of human movement. Ph.D. Dissertation, Univ. of Calif., Berkeley.

    Google Scholar 

  • Winters, J. M., and Stark, L. (1985) Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans. Biomed. Engng., BME-32: 826–840.

    Google Scholar 

  • Winters, J.M. and Stark, L. (1987) Muscle models: what is gained and what is lost by varying model complexity. Biol. Cybem. 55: 403–420.

    Article  CAS  Google Scholar 

  • Wismans, J. Veldpaus, F., Janssen, J., Huson, A. and Struben, P. (1980) A three- dimensional mathematical model of the knee joint. J. Biomech. 13: 677–685.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, G.T. and Zajac, F.E. (1989) A Planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech., 22: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, G.T. and Zajac, F.E. (1990) Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation study. IEEE Trans. Biomed. Engng. Sept. 1990.

    Google Scholar 

  • Zajac, F.E. (1985) Thigh muscle activity in cats during maximal height jumps. J. Neurophysiol., 53: 979–993.

    CAS  PubMed  Google Scholar 

  • Zajac, F.E. and Gordon, M.E. (1989) Determining muscle’s force and action in multi- articular movement. Exerc. Sport Sci. Rev. 17: 187–230.

    CAS  PubMed  Google Scholar 

  • Zajac, F.E. (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. CRC Crit. Rev. in Biomed. Engng.,17: 359–411.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Zajac, F.E., Winters, J.M. (1990). Modeling Musculoskeletal Movement Systems: Joint and Body Segmental Dynamics, Musculoskeletal Actuation, and Neuromuscular Control. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics