Skip to main content

Overview: Influence of Muscle on Cyclic and Propulsive Movements Involving the Lower Limb

  • Chapter
Multiple Muscle Systems

Abstract

We are one of the few living animals who normally locomotes bipedally. Because of this, our lower limbs have features and requirements that are somewhat unique in the animal kingdom. We are endowed with relatively strong leg extensor muscles and long lower limbs, characteristics well suited to our locomotion and postural requirements. These features, however, also result in different loading than would normally be encountered by the upper limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, L. D. and Loeb, G. E. (1985) The distal hindlimb musculature of the cat. Exp. Brain Res. 58: 580–593.

    Article  Google Scholar 

  • Adrian, M. J. and Laughlin, C. K. (1983) Magnitude of ground reaction forces while performing volleyball skills. Biomechanics VIII-B (Edited by Matsui, H. and Kobayashi, K.), pp. 903–914. Human Kinetics Publishers, Champaign, IL.

    Google Scholar 

  • Alexander, R. McN. (1976) Estimates of speeds of dinosaurs. Nature 261: 129–130.

    Article  Google Scholar 

  • Alexander, R. McN. (1988) Elastic Mechanisms in Animal Movement. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Alexander, R. McN. and Bennet-Claik, H. C. (1977) Storage of elastic strain energy in muscles and other tissues. Nature 265: 114–117.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, R. McN. and Vernon, A. (1975) The dimensions of knee and ankle muscles and the forces they exert. J. Hum. Movmt. Studies 1: 115–123.

    Google Scholar 

  • Andrews, J. G. (1987) The functional roles of the hamstrings and quadriceps during cycling: Lombard’s Paradox revisited. J. Biomech. 20: 565–575.

    Article  CAS  PubMed  Google Scholar 

  • Bach, T. M., Chapman, A. E. and Calvert, T. W. (1983) Mechanical resonance of the human body during voluntary oscillations about the ankle joint. J. Biomech. 16: 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Berme, N., Heydinger, G. and Cappozzo, A. (1987) Calculation of loads transmitted at the anatomical joints. Biomech. of Engng.: Modelling, Simulation, Control (Edited by Morecki, A.), pp. 89–131. Springer-Verlag, Wien.

    Google Scholar 

  • Bosco, C., Komi, P. V. and Ito, A. (1981) Prestretch potentiation of human skeletal muscle during ballistic movement. Actaphysiol. Scand 111: 135–140.

    Article  CAS  Google Scholar 

  • Bresler, B. and Frankel, J. P. (1950) The forces and moments in the leg during level walking. Trans. Am. Soc. Mech. Engrs. 72: 27–36.

    Google Scholar 

  • Brooks, V. B. (1986) The Neural Basis of Motor Control. Oxford University Press, New York.

    Google Scholar 

  • Bruggemann, P. (1985) Mechanical load on the achilles tendon during rapid dynamic sport movements. Biomechanics: Current Interdisciplinary Research (Edited by Perren, S. M. and Schneider, E.), pp. 669–674. Martinus Nijhoff, Boston.

    Google Scholar 

  • Burdett, R. G. (1982) Forces predicted at the ankle during running. Med. Sci. Sports Exercise 14: 308–316.

    Article  CAS  Google Scholar 

  • Cavagna, G. A. (1970) Elastic bounce of the body. J. appl. Physiol. 29: 279–282.

    CAS  PubMed  Google Scholar 

  • Cavagna, G. A. and Kaneko, M. (1977) Mechanical work and efficiency in level walking and running. J. Physiol. 268: 467–481.

    CAS  PubMed  Google Scholar 

  • Cavanagh, P. R. and Lafortune, M. A. (1980) Ground reaction forces in distance running. J. Biomech. 13: 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Chao, E. Y., Laughman, R. K., Schneider, E. and Stauffer, R. N. (1983) Normative data of knee joint motion and ground reaction forces in adult level walking. J. Biomech. 16: 219–233.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, A. E. (1985) The mechanical properties of human muscle. Exercise and Sport Sciences Reviews (Edited by Teijung, R. L.), Vol. 13, pp. 443–501. Macmillan Publishing Company, New York.

    Google Scholar 

  • Cordo, P.J. and Rymer, W. Zev. (1983) Contributions of motor-unit recruitment and rate modulation to compensation for muscle yielding. J. Neurophys. 47: 797–809.

    Google Scholar 

  • Crowninshield, R. D., Brand, R. A. and Johnston, R. C. (1978a) The effects of walking velocity and age on hip kinematics and kinetics. Clin. Orthop. 132: 140–144.

    Google Scholar 

  • Crowninshield, R. D., Johnston, R. C., Andrews, J. G. and Brand, R. A. (1978b) A biomechanical inves¬tigation of the human hip. J. Biomech. 11: 75–85.

    Article  CAS  PubMed  Google Scholar 

  • Dahlkvist, N. J., Mayo, P. and Seedhom, B. B. (1982) Forces during squatting and rising from a deep squat. Engng. Med. 11: 69–76.

    Article  CAS  Google Scholar 

  • Elftman, H. (1939) Forces and energy changes in the leg during walking. Am. J. Physiol. 125: 339–356.

    Google Scholar 

  • Fukashiro, S. and Komi, P. V. (1987) Joint moment and mechanical power flow of the lower limb during vertical jump. Int. J. Sports Med. 8: 15–21.

    Article  PubMed  Google Scholar 

  • Fuller, J.J. and Winters, J.M. (1988) Estimated joint loading during exercises recommended by the arthritis foundation.1988 Adv. in Bioengineering (Edited by Miller G. R.), pp. 159–162. American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Fung, Y. C. (1981) Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York.

    Google Scholar 

  • Galea, V. and Norman, R. W. (1985) Bone-on-bone forces at the ankle joint during a rapid dynamic movement. Biomechanics IX-A (Edited by Winter, D. A., Norman, R. W., Wells, R. P., Hayes, K. C. and Patla, A. E.), pp. 71–76. Human Kinetics Publishers, Champaign, IL.

    Google Scholar 

  • Greene, P. R. and McMahon, T. A. (1979) Reflex stiffness of man’s anti-gravity muscles during kneebends while carrying extra weights. J. Biomech. 12: 881–891.

    Article  CAS  PubMed  Google Scholar 

  • Gregor, R. J., Komi, P. V. and Jarvinen, M. (1987) Achilles tendon forces during cycling. Int. J. Sports Med. 8: 9–14.

    Article  PubMed  Google Scholar 

  • Gregor, R. J., Roy, R. R., Whiting, W. C., Lovely, R. G., Hodgson, J. A. and Edgerton, V. R. (1988) Mechanical output of the cat soleus during treadmill locomotion: In vivo vs in situ characteristics. J. Biomech. 21: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. (1972) The role of muscle stiffness in meeting the changing postural and locomotor requirements for force development by the ankle extensors. Acta Physiol Scand. 86: 92–108.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. (1975) Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiol. Rev. 55: 247–304.

    CAS  PubMed  Google Scholar 

  • Gross, T. S. and Bunch, R. P. (1988) Measurement of discrete vertical in-shoe stress with piezoelectric transducers. J. Biomed. Engrg. 10: 261–265.

    Article  CAS  Google Scholar 

  • Hamill, J., Bates, B. T., Knutzen, K. M. and Sawhill, J. A. (1983) Variations in ground reaction force parameters at different running speeds. Hum. Movmt. Sci. 2: 47–56.

    Article  Google Scholar 

  • Harrison, R. N., Lees, A., McCullagh, P. J. J. and Rowe, W. B. (1986) A bioengineering analysis of human muscle and joint forces in the lower limbs during running. J. Sports Sci. 4: 201–218.

    Article  CAS  PubMed  Google Scholar 

  • Hatze H. (1978) A general myocybemetic control model of skeletal muscle. Biol. Cybern. 28: 143–157.

    Article  CAS  PubMed  Google Scholar 

  • Hay, J. G., Putnam, C. A. and Wilson, B. D. (1979) Forces exerted during exercises on the uneven bars. Med. Sci. Sports 11: 123–130.

    CAS  PubMed  Google Scholar 

  • Hennig, E. M., Cavanagh, P. R., Albert, H. T. and Macmillan, N. H. (1982) A piezoelectric method of measuring the vertical contact stress beneath the human foot. J. Biomed. Engrg. 4: 213–222.

    Article  CAS  Google Scholar 

  • Hof, A. L. and Van den Berg, Jw. (1981) EMG to force processing I: An electrical analogue of the Hill muscle model. J. Biomech. 14: 747–758.

    CAS  Google Scholar 

  • Hof, A. L., Geelen, B. A. and Van den Berg, Jw. (1983) Calf muscle moment, work and efficiency in level walking: Role of series elasticity. J. Biomech. 16: 523–537.

    CAS  Google Scholar 

  • Hogan, N., Bizzi, E., Mussa-Ivaldi, F. A. and Flash, T. (1987) Controlling multijoint motor behavior. Exercise and Sport Sciences Reviews (Edited by Pandolf, K. B.), Vol. 15, pp. 153–190. Macmillan Publishing Co., New York.

    Google Scholar 

  • Ito, A., Komi, P. V., Sjodin, B., Bosco, C. and Karlsson, J. (1983) Mechanical efficiency of positive work in running at different speeds. Med. Sci. Sports Exercise 15: 299–308.

    Article  CAS  Google Scholar 

  • Kilvington, M. and Goodman, R. M. F. (1981) In vivo hip joint forces recorded on a strain gauged “English” prosthesis using an implanted transmitter. Engng. Med. 10: 175–187.

    Article  Google Scholar 

  • Komi, P. V. (1984) Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exercise and Sport Sciences Reviews (Edited by Teijung, R. L.), Vol. 12, pp. 81–121. The Collamore Press, Lexington, MA.

    Google Scholar 

  • Komi, P. V. and Norman, R. W. (1987) Preloading of the thrust phase in cross- country skiing. Int. J. Sports Med. 8: (Suppl. 1), 48–54.

    Article  PubMed  Google Scholar 

  • Komi, P. V., Salonen, M., Jarvinen, M. and Kokko, O. (1987) In vivo registration of achilles tendon forces in man. I. Methodological development. Int. J. Sports Med. 8: (Suppl. 1), 3–8.

    Article  PubMed  Google Scholar 

  • Landjerit, B., Maton, B. and Peres, G. (1988) In vivo muscular force analysis during the isometric flexion on a monkey’s elbow. J. Biomech. 21: 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Larish, D. D., Martin, P. E. and Mungiole, M. (1988) Characteristic patterns of gait in the healthy old. Ann. N. Y. Acad. Sci. 515: 18–32.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, T. A. (1984) Muscles, Reflexes, and Locomotion. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Miller, D. I. and Nissinen, M. A. (1987) Critical examination of ground reaction force in the running forward somersault. Int. J. Sport Biomech. 3: 189–206.

    Google Scholar 

  • Mungiole, M. (1990) Factors influencing the mechanical output of the ankle plantar flexor muscles during concentric action, with and without prior stretching. Ph.D. Dissertation. Arizona State University.

    Google Scholar 

  • Nistor, L., Markhede, G. and Grimby, G. (1982) A technique for measurements of plantar flexion torque with the Cybex II dynanometer. Scand J. Rehab. Med. 14: 163–166.

    CAS  Google Scholar 

  • Norman, R. W., Sharratt, M. T., Pezzack, J. C. and Noble, E. G. (1976) Reexamination of the mechanical efficiency of horizontal treadmill running. Biomechanics V-B (Edited by Komi, P. V.), pp. 87– 93. University Paik Press, Baltimore.

    Google Scholar 

  • Norman, R. W. and Komi, P. V. (1979) Electromechanical delay in skeletal muscle under normal movement conditions. Acta Physiol. Scand. 106: 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Norman, R. W. (1989) A barrier to understanding human motion mechanisms: A commentary. Future Directions in Exercise and Sport Science Research (Edited by Skinner, J. S., Corbin, C. B., Landers, D. M., Martin, P. E. and Wells, C. L.), pp. 151–161. Human Kinetics, Champaign, IL.

    Google Scholar 

  • Olney, S. J. and Winter, D. A. (1985) Predictions of knee and ankle moments of force in walking from EMG and kinematic data. J. Biomech. 18: 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Patriarco, A. G., Mann, R. W., Simon, S. R. and Mansour, J. M. (1981) An evaluation of the approaches of optimization models in the prediction of muscle forces during human gait. J. Biomech. 14: 513–525.

    Article  CAS  PubMed  Google Scholar 

  • Rack, P. M. H. and Ross, H. F. (1984) The tendon of flexor pollicis longus: its effects on the muscular control of force and position at the human thumb. J. Physiol. 351: 99–110.

    CAS  PubMed  Google Scholar 

  • Robertson, D. G. E. and Winter, D. A. (1980) Mechanical energy generation, absorption and transfer amongst segments during walking. J. Biomech. 13: 845–854.

    Article  CAS  PubMed  Google Scholar 

  • Rydell, N. (1965) Forces in the hip joint Part (II) Intravital measurements. Biomechanics and Related Bioengineering Topics (Edited by Kenedi, R. M.), pp. 351–357. Pergamon Press, Oxford.

    Google Scholar 

  • Smith, A. J. (1975) Estimates of muscle and joint forces at the knee and ankle during a jumping activity. J. Hum. Movmt. Studies 1: 78–86.

    Google Scholar 

  • Tilney, F. and Pike, F.H. (1925) Muscular coordination experimentally studied in its relation to the cerebellum. Archives of Neurology and Psychiatry 13: 289–334.

    Google Scholar 

  • van Ingen Schenau, G. J. (1984) An alternative view of the concept of utilisation of elastic energy in human movement. Hum. Movmt. Sci. 3: 301–336.

    Article  Google Scholar 

  • van Ingen Schenau, G. J. (1989) From rotation to translation: Constraints on multi-joint movements and the unique action of bi-articular muscles. Hum. Movmt. Sci. 8: 301–337.

    Article  Google Scholar 

  • van Ingen Schenau, G. J., Bobbert, M. F. and Rozendal, R. H. (1987) The unique action of bi- articular muscles in complex movements. J. Anat. 155: 1–5.

    Google Scholar 

  • Walmsley, B., Hodgson, J. A. and Burke, R. E. (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J. Neurophysiol. 41: 1203–1216.

    CAS  PubMed  Google Scholar 

  • Wells, R. P. (1988) Mechanical energy costs of human movement: an approach to evaluating the transfer possibilities of two-joint muscles. J. Biomech. 21: 955–964.

    Article  CAS  PubMed  Google Scholar 

  • Whiting, W. C., Gregor, R. J., Roy, R. R. and Edgerton, V. R. (1984) A technique for estimating mechanical work of individual muscles in the cat during treadmill locomotion. J. Biomech. 17: 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Williams, K. R. and Cavanagh, P. R. (1983) A model for the calculation of mechanical power during distance running. J. Biomech. 16: 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Winter, D. A. (1984a) Biomechanics of human movement with applications to the study of human locomotion. CRC Crit. Rev. Biomed. Engng. 9: 287–314.

    CAS  Google Scholar 

  • Winter, D. A. (1984b) Kinematic and kinetic patterns in human gait: variability and compensating effects. Hum. Movmt. Sci. 3: 51–76.

    Article  Google Scholar 

  • Winters, J. M. and Stark, L. (1985) Analysis of fundamental movement patterns through the use of in- depth antagonistic muscle models. IEEE Trans, biomed. Engrg. BME-32: 826–839.

    Google Scholar 

  • Winters, J. M. and Stark, L. (1988) Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J. Biomech. 21: 1027–1041.

    Article  CAS  PubMed  Google Scholar 

  • Zajac, F. E. and Gordon, M. E. (1989) Determining muscle’s force and action in multi-articular movement. Exercise and Sport Sciences Reviews (Edited by Pandolf, K. B.), Vol. 17, pp. 187–230. Williams and Wilkins, Baltimore.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Mungiole, M., Winters, J.M. (1990). Overview: Influence of Muscle on Cyclic and Propulsive Movements Involving the Lower Limb. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_35

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics