Skip to main content

Modeling Muscle Mechanics (and Energetics)

  • Chapter
Multiple Muscle Systems

Abstract

This book deals with an engineering perspective of the mechanics and control of movement in animals, particularly humans. The final effectors that actually produce movement are the actuators of the neuro-musculo-skeletal control system: the skeletal muscles. In the analysis of any control system, especially one as complex as that governing movement, it is essential to have a clear understanding of the physical nature of the actuators and also tractable mathematical representations of their dynamics. A satisfactory comprehension of movement is difficult to achieve without sophisticated model simulations, which require a very heavy computational effort for even severely reduced models, and which involve complex histories of muscle activation, force, and motion beyond the range of experience in simple laboratory experiments. Of the many predictions in a simulation of movement only a few are accessible to direct experimental verification; for example, limb positions, surface electromyograms (EMGs), and joint torques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aidley, D.J. (1971) The Physiology of Excitable Cells, Cambridge Univ. Press, London, UK.

    Google Scholar 

  • Bornhorst, W.J. and Minadri, J.E. (1970) A phenomenological theory of muscular contraction: Parts I and II. Biophys. J. 10: 137–171.

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert, J.P., Capellen, L., and de Blende, J. (1930) The visco-elastic properties of frog’s muscles. J. Physiol. 69: 473–492.

    CAS  PubMed  Google Scholar 

  • Burke, R.E., Rudomin, P., and Zajac, F.E. (1976) The effect of activation history on tension production by individual muscle units. Brain Res. 109: 515–529.

    Article  CAS  PubMed  Google Scholar 

  • Cooke, R. (1986) The mechanism of muscle contraction. CRC Crit. Rev. Biochem. 21: 53–118.

    Article  CAS  PubMed  Google Scholar 

  • Eisenbeig, E. (1986) How ATP hydrolysis drives muscle contraction. Lec. Math. Life Sc. (Amer. Math. Soc., Providence, RI ) 16: 19–55.

    Google Scholar 

  • Eisenbeig, E. and Greene, L.E. (1980) The relation of muscle biochemistry to muscle physiology. Ann. Rev. Physiol 42: 293–309.

    Article  Google Scholar 

  • Eisenberg, E., Hill, T.L., and Chen, Y.D. (1980) Cross- bridge model of muscle contraction: quantitative analysis. Biophys. J. 29: 195–227.

    Article  CAS  PubMed  Google Scholar 

  • Gasser, H.S. and Hill, A.V. (1924) The dynamics of muscular contraction. Proc. Roy. Soc. B 96: 398–437.

    Article  Google Scholar 

  • Fenn, W.O. and Marsh, B.S. (1935) Muscular force at different speeds of shortening. J. Physiol. 85: 277–297.

    CAS  PubMed  Google Scholar 

  • Gordon, A.M., Huxley, A.F., and Julian, F.J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J. Physiol. 184: 170–192.

    CAS  PubMed  Google Scholar 

  • Harry, J.D., Ward, A.W., Heglund, N.C., Morgan, D.L., and McMahon, T.A. (1990) Crossbridge cycling theories cannot explain high-speed lengthening behavior in frog muscle. Biophys. J. 57: 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Hill, A.V. (1938) The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc., B 126: 136–195.

    Article  Google Scholar 

  • Hill, A.V. (1964) The effect of load on the heat of shortening of muscle. Proc. Roy. Soc., B 159: 297–318.

    Article  CAS  Google Scholar 

  • Hill, A. V. (1970) First and Last Experiments in Muscle Mechanics, Cambridge University Press, London, 120.

    Google Scholar 

  • Hill, T.L. (1977) Free Energy Transduction in Biology, Academic Press, New Yoik, NY.

    Google Scholar 

  • Hill, T.L., Eisenberg, E., Chen, Y., and Podolsky, R.J. (1975) Some self-consistent two-state sliding filament models of muscle contraction. Biophys. J. 15: 335–372.

    Article  CAS  PubMed  Google Scholar 

  • Huxley, A.F. (1957) Muscle structure and theories of contraction. Prog. Biophys. and Biophys. Chem. 7: 257–318.

    Google Scholar 

  • Huxley, A.F. (1980) Reflections on Muscle, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Huxley, A.F. and Simmons, R.M. (1971) Proposed mechanism of force generation in striated muscle. Nature 233: 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Inesi, G. (1985) Mechanism of calcium transport. Ann. Rev. Physiol. 47: 573–601.

    Article  CAS  Google Scholar 

  • Iwazumi, T. (1978) A new field theory of muscle contraction, In: Cross-Bridge Mechanisms in Muscle Contraction ( H. Sugi, and G.H. Pollack, Eds.), Univ. Tokyo Press, 611–632.

    Google Scholar 

  • Joyce, G.C. and Rack, P.M.H. (1969) Isotonic lengthening and shortening movements of cat soleus muscle. J. Physiol 204: 475–491.

    CAS  PubMed  Google Scholar 

  • Joyce, G.C., Rack, P.M.H., and Westbury, D.R. (1969) The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements. J. Physiol. 204: 461–467.

    CAS  PubMed  Google Scholar 

  • Julian, F.J. and Sollins, M.R. (1975) Variation of muscle stiffness with force at increasing speeds of shortening. J. Gen. Physiol. 66: 287–302.

    Article  CAS  PubMed  Google Scholar 

  • Katz, B. (1939) The relation between force and speed in muscular contraction. J. Physiol. 96: 45–64.

    CAS  PubMed  Google Scholar 

  • Lacker, H.M. and Peskin, C.S. (1986) A mathematical method for unique determination of cross-bridge properties from steady-state mechanical and energetic experiments on macroscopic muscle. Lec. Math. Life Sc. (Amer. Math. Soc., Providence, RI), 16: 121–153.

    Google Scholar 

  • Levin, A. and Wyman, J. (1927) The viscous elastic properties of muscle. Proc. Roy. Soc., B 101: 218–243.

    Article  Google Scholar 

  • Ma, S. and Zahalak, G.I. (1987) A simple self- consistent distribution-moment model for muscle: chemical energy and heat rates. Math. Biosc 84: 211–230.

    Article  Google Scholar 

  • Ma, S. (1988) Activation dynamics for the distribution-moment model of muscle, D. Sc. Dissert. Dep. Mech. Eng., Washington University, St. Louis, MO., 73–115.

    Google Scholar 

  • Ma, S. and Zahalak, G.I. (1990) A distribution-moment model of energetics in skeletal muscle. J. Biomech., (in press).

    Google Scholar 

  • McMahon, T.A. (1984) Muscles, Reflexes, and Locomotion, Princeton Univ. Press, Princenton, NJ.

    Google Scholar 

  • Partridge, L.D. (1965) Modification of neural output signals by muscles: a frequency response study. J. Appl. Physiol. 20: 150–156.

    CAS  PubMed  Google Scholar 

  • Pate, E. and Cooke, R. (1986) A model for the interaction of muscle cross-bridges with ligands which compete with ATP. J. Theor. Biol. 118: 215–230.

    Article  CAS  PubMed  Google Scholar 

  • Paul, R., Elzinga, G., and Yamada, K., Eds. (1989) Muscle Energetics, Alan R. Liss, New York, NY.

    Google Scholar 

  • Pollack, G. and Sugi, H. Eds. (1984) Contractile Mechanisms in Muscle, Plenum Press, New York, NY.

    Google Scholar 

  • Propp, M.B. (1981) A model of muscle contraction based upon component studies. Lec. Math. Life. Sc. (Amer. Math. Soc., Providence, RI), 16: 61–119.

    Google Scholar 

  • Ramsey, R.W. and Street, S.F. (1940) The isometric length-tension diagram of isolated muscle fibers of the frog. J. Cell. Comp. Physiol. 15: 11–34.

    Article  CAS  Google Scholar 

  • Richmond, F.J.R., MacGillis, D.R.R., and Scott, D.A. (1985) Muscle fiber compartmentalization in cat splenius muscles. J. Neurophys. 53: 868–885.

    CAS  Google Scholar 

  • Ritchie, J.M. and Wilkie, D.R. (1958) The dynamics of muscular contraction. J. Physiol. 143: 104–113.

    CAS  PubMed  Google Scholar 

  • Ruegg, J.C. (1986) Calcium in Muscle Activation, Springer-Verlag, New York, NY.

    Google Scholar 

  • Schoenberg, M., Brenner, B., Chalovich, J.M., Greene, L.E. and Eisenberg, E. (1984) Cross-bridge attachment in relaxed muscle, in Contractile Mechanisms in Muscle ( G. Pollack and H. Sugi, Eds.), Plenum Press, New York, NY, 269–284.

    Google Scholar 

  • Squire, J.M. (1986) Muscle: Design, Diversity, and Disease, Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Squire, J.M. (1981) The Structural Basis of Muscular Contraction, Plenum, New York, NY.

    Book  Google Scholar 

  • Tirosh, R., Liron, N., and Oplatka, A. (1978) A hydrodynamic mechanism for muscular contraction. In: Cross-Bridge Mechanisms in Muscle Contraction ( H. Sugi and G.H. Pollack, Eds.), Univ. Tokyo Press, 593–609.

    Google Scholar 

  • Tozeren, A. and Schoenberg, M. (1986) The effect of cross-bridge clustering and head-head competition on the mechanical response of skeletal muscle fibers under equilibrium conditions. Biophys. J. 50: 873–884.

    Article  Google Scholar 

  • van Ingen Schenau, G.J., Bobbert, M.F., Ettema, G.J., de Graaf, J.B., and Huijing, P.A. (1988) A simulation of rat EDL force output based on intrinsic muscle properties. J. Biomech. 21: 815–824.

    Article  Google Scholar 

  • Woledge, R.C., Curtin, N.A., and Homsher, E. (1985) Energetic Aspects of Muscle Contraction, Academic Press, New Yoik.

    Google Scholar 

  • Wood, J.E. and Mann, R.W. (1981) A sliding-filament cross-bridge ensenble model of muscle contraction for mechanical transients. Math.Biosc. 57: 211–263.

    Article  Google Scholar 

  • Zahalak, G.I. (1981) A distribution-moment approximation for kinetic theories of muscular contractioa Math. Biosc. 55: 89–114.

    Article  Google Scholar 

  • Zahalak, G.I. (1986) A comparison of the mechanical behavior of the cat soleus muscle with a distribution- moment model. J. Biomech. Eng. 108: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Zahalak, G.I. and Ma, S.-P. (1990) Muscle activation and contraction: constitutive relations based directly on cross-bridge kinetics. J. Biomech. Eng. 112: 52–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, New York

About this chapter

Cite this chapter

Zahalak, G.I. (1990). Modeling Muscle Mechanics (and Energetics). In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics