Skip to main content

Ionic Diffusion in Olivine

  • Chapter

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 8))

Abstract

The diffusion phenomena of ions in olivine are not only of considerable geophysical interest, but are also of great interest in geochemical and cosmochemical studies. In order to discuss the conditions in the mantle of the Earth, we must understand the mechanisms which control the properties of the mantle minerals. Since it is considered to be the major constituent of the upper mantle, the diffusion in olivine provides us with one of the basic clues on the mechanisms of plastic flow-phase transition in the mantle (Misener, 1972, 1974; Buening and Buseck, 1973; Weertman and Weertman, 1975; Jaoul et al, 1980; Reddy et al, 1980; Condit et al, 1985). On the other hand, olivine is distributed widely in igneous rocks and stony meteorites. The measured diffusion coefficients of ions in olivine should thus be of importance in the interpretation of the compositional zoning, the discordant age, and/or the thermal history of these natural samples (Takahashi, 1980; Morioka et al, 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando, K., Kurokawa, H., Oishi, Y., and Takei, H. (1981) Self-diffusion coefficient of oxygen in single-crystal forsterite. J. Amer. Ceramic Soc. 64, No. 2.

    Google Scholar 

  • Birle, J.D., Gibbs, G.V., Moore, P.B., and Smith, J.V. (1968) Crystal structure of natural olivines. Amer. Mineral. 53, 807–824.

    Google Scholar 

  • Buening, D.K., and Buseck, P.R. (1973) Fe-Mg lattice diffusion in olivine. J. Geophys. Res. 78, 6852–6862.

    Article  Google Scholar 

  • Busing, W.R. (1981) WMIN, A computer program to model molecules and crystals in terms of potential energy functions. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Clark, A.M., and Long, J.V.P. (1971) Anisotropic diffusion of nickel in olivine, in Thomas Graham Memorial Symposium on Diffusion Processes, pp. 511–521. Gordon & Breach, New York.

    Google Scholar 

  • Condit, R.H., Weed, H.C., and Piwinskii, A.J. (1985) A technique for observing oxygen diffusion along grain boundary regions in synthetic forsterite, in Point Defects in Minerals, edited by R.N. Schock, pp. 97–105. AGU Geophysical Monograph vol. 31. AGU, Washington, DC.

    Google Scholar 

  • Crank, J. (1975) The Mathematics of Diffusion. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Deer, W.A., Howie, R.A., and Zussman J. (1967) Rock-Forming Minerals. Longmans, London.

    Google Scholar 

  • Glasstone, S., Laidler, K.J., and Eyring, H. (1941) The Theory of Rate Processes, the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical phenomena. McGraw-Hill, New York.

    Google Scholar 

  • Hofmann, A.W., and Magaritz, M. (1977) Diffusion of Ca, Sr, Ba, and Co in a basalt melt: Implication for the geochemistry of the mantle. J. Geophys. Res. 82, 5432–5440.

    Article  Google Scholar 

  • Ida, Y. (1976) Interionic repulsive force and compressibility of ions. Phys. Earth Planet. Interiors 13, 97–104.

    Article  Google Scholar 

  • Jaoul, O., Froidevaux, C., Durham, W.B., and Michaut, M. (1980) Oxygen self-diffusion in forsterite: Implication for the high-temperature creep mechanism. Earth Planet. Sci. Lett. 47, 391–397.

    Article  Google Scholar 

  • Jaoul, O., Poumellec, M., Froidevaux, C., and Havette, A. (1981) Silicon diffusion in forste-rite: A new constraint for understanding mantle deformation, in Anelasticity in the Earth, edited by F.D. Stacey et al., pp. 95–100. Godyn. Ser., vol 4. AGU, Washington, DC.

    Google Scholar 

  • Jaoul, O., Houlier, B., and Abel, F. (1983) Study of l8O diffusion in magnesium orthosilicate by nuclear microanalysis. J. Geophys. Res. 88, 613–624.

    Article  Google Scholar 

  • Jurewicz, A.J.G., and Watson, E.B. (1988) Cations in olivine, Part 2: Diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contrib. Mineral. Petrol. 99, 186–201.

    Article  Google Scholar 

  • Kingery, W.D., Bowen, H.K., and Uhlmann, D.R. (1976) Introduction to Ceramics, pp. 248–249. Wiley, New York.

    Google Scholar 

  • Lasaga, A.C. (1980) Defect calculations in silicates: Olivine. Amer. Mineral. 65, 1237–1248.

    Google Scholar 

  • Magaritz, M., and Hofmann, A.W. (1978a) Diffusion of Sr, Ba and Na in obsidian, Geochim. Cosmochim. Acta 42, 595–605.

    Article  Google Scholar 

  • Magaritz, M., and Hofmann, A.W. (1978b) Diffusion of Eu and Gd in basalt and obsidian. Geochim. Cosmochim. Acta 42, 847–858.

    Article  Google Scholar 

  • Manning, J.R. (1974) Diffusion kinetics and mechanisms in simple crystals, in Geochemical Transport and Kinetics, edited by A.W. Hofmann, B.J. Giletti, H.S. Yoder, Jr, and R.A. Yund, pp. 3–13. Carnegie Inst. Washington.

    Google Scholar 

  • Matsui, Y. (1979) Science of Earth’s Materials, vol. 3, Iwanami Series of Geosciences, vol. IV (in Japanese), p. 24, Fig. 1. 6. Iwanami Syoten, Tokyo.

    Google Scholar 

  • Matsui, Y., and Syono, Y. (1968) Unit cell dimensions of some synthetic olivine group solid solutions. Geochem. J. 2, 516–520.

    Google Scholar 

  • Misener, D.J. (1972) Interdiffusion studies in the system Fe2Si04-Mg2Si04. Carnegie Inst. Yearbook 71, 516–520.

    Google Scholar 

  • Misener, D.J. (1974) Cationic diffusion in olivine to 1400°C and 35 kb, in Geochemical Transport and Kinetics, edited by A.W. Hofmann, B.J. Giletti, H.S. Yoder, Jr., and R.A. Yund, pp. 117–129. Carnegie Inst. Washington.

    Google Scholar 

  • Miyamoto, M. (1988) Ion migration in MgSi03-perovskite and olivine by molecular dynamics calculations. Phys. Chem. Minerals 15, 601–604.

    Article  Google Scholar 

  • Miyamoto, M., and Takeda, H. (1983) Atomic diffusion coefficients calculated for transition metals in olivine. Nature 303, 602–603.

    Article  Google Scholar 

  • Morioka, M. (1980) Cation diffusion in olivine—I. Cobalt and magnesium. Geochim Cosmochim. Acta 44, 759–762.

    Article  Google Scholar 

  • Morioka, M. (1981) Cation diffusion in olivine—II. Ni-Mg, Mn-Mg, Mg, and Ca.Geochim. Cosmochim. Acta 45, 1573–4580.

    Article  Google Scholar 

  • Morioka, M. (1983) Cation diffusion in olivine—III. Mn2Si04 system. Geochim. Cosmochim. Acta 47, 2275–2279.

    Article  Google Scholar 

  • Morioka, M., Suzuki, K., and Nagasawa, H. (1985) Trace element diffusion in olivine: Mechanism and a possible implication to natural silicate systems, in Point Defects in Minerals, edited by R.N. Schock, pp. 116–121. AGU Geophysical Monograph, vol. 31. AGU, Washington, DC.

    Google Scholar 

  • Nakamura, A., and Schmalzried, H. (1984) On the Fe2+-Mg2+-interdiffusion in olivine (II). Ber. Bunsenges. Phys. Chem. 88, 140–145.

    Google Scholar 

  • Nitsan, U. (1974) Stability field of olivine with respect to oxidation and reduction. J Geophys. Res. 79, 706–711.

    Article  Google Scholar 

  • Ohashi, Y., and Finger, L.W. (1974) Diffusion anisotropy in olivine—Model calculation.Carnegie Inst. Yearbook 73, 403–405.

    Google Scholar 

  • Reddy, K.P.R., Oh, S.M., Major, Jr. L.D., and Cooper, A.R. (1980) Oxygen diffusion in forsterite. J. Geophys. Res. 85, 322–326.

    Article  Google Scholar 

  • Schock, R.N., and Duba, A.G. (1985) Point defects and the mechanisms of electrical conduction, in Point Defects in Minerals, edited by R.N. Schock, pp. 88–96. AGU Geophysical Monograph, vol. 31. AGU, Washington, DC.

    Google Scholar 

  • Schwier, G., Dieckmann, R., and Schmalzried, H. (1973) Punktfehlstellen in Oxidm- schphasen, (I) Fehlstellenthermodynamik der Mischphasen (CoxMg1_x)O und (CoxMg1_x)2Si04. Ber. Bunsenges. Phys. Chem. 77, 402–408.

    Google Scholar 

  • Shannon, R.D., and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystall. B25, 925–946.

    Google Scholar 

  • Shannon, R.D., and Prewitt, C.T. (1970) Revised values of effective ionic radii. Acata Crystall. B26, 1046–1048.

    Article  Google Scholar 

  • Shewmon, P.G. (1963) Diffusion in Solids. McGraw-Hill, New York, 203 pp.

    Google Scholar 

  • Smyth, D., and Stocker, R.L. (1975) Point defects and non-stoichiometry in forsterite.Phys. Earth Planet. Interiors 10, 183–192.

    Article  Google Scholar 

  • Sockel, H.G., and Hallwig, D. (1977) Ermittlung kleiner Diffsionskoeffzienten mittels SIMS in oxydischen Verbindungen, Mikrochim. Acta, 7, 95–107.

    Google Scholar 

  • Stocker, R.L. (1978a) Point-defect formation parameters in olivine. Phys. Earth Planet. Interiors 17, 108–117.

    Article  Google Scholar 

  • Stocker, R.L. (1978b) Influence of oxygen pressure on defect concentrations in olivine with a fixed cationic ratio. Phys. Earth Planet. Interiors 17, 118–129.

    Article  Google Scholar 

  • Takahashi, E. (1980) Thermal history of lherzolite zenoliths—I. Petrology of lherzolite xenoliths from the Ichinomegata crater, Oga peninsula, northeast Japan. Geochim. Cosmochim. Acta 44, 1643–1658.

    Article  Google Scholar 

  • Weertman, J., and Weertman, J.R. (1975) High-temperature creep of rock and mantle viscosity, in Annual Reviews of Earth and Planetary Sciences, vol. 3, pp. 293–315, edited by F.A. Donath, F.G. Stehli, and G.W. Wetherill.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Morioka, M., Nagasawa, H. (1991). Ionic Diffusion in Olivine. In: Ganguly, J. (eds) Diffusion, Atomic Ordering, and Mass Transport. Advances in Physical Geochemistry, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9019-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9019-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9021-3

  • Online ISBN: 978-1-4613-9019-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics