The Quasi-Stationary State Approximation to Fluid/Rock Reaction: Local Equilibrium Revisited

  • Peter C. Lichtner
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 8)


Reaction Zone Reaction Front Jump Discontinuity Fluid Composition Modal Abundance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balashov, V.N. (1985) On a mathematical description of metasomatic zoning with multicomponent minerals. Doklady Akad. Nauk USSR 280, 746–750 (in Russian).Google Scholar
  2. Balashov, V.N., and Lebedeva, M.I. (1988) Macrokinetic model of the origin and development of a monomineralic bimetasomatic zone. Submitted to D.S. Korzhinskii volume. Springer-Verlag, New York.Google Scholar
  3. Balashov, V.N., and Lebedeva, M.I. (1989) On transition to local equilibrium during development of diffusion bimetasomatism zone. Doklady Akad. Nauk. USSR, in press (in Russian).Google Scholar
  4. Bear, J. (1972) Dynamics of Fluids in Porous Media. Elsevier, Amsterdam, 764 pp.Google Scholar
  5. Bruno, J., and Puigdomenech I. (1988) Validation of the SKBU1 uranium thermodynamic data base for its use in geochemical calculations with EQ3/6. Scientific Basis for Nuclear Waste Management XIII. Berlin.Google Scholar
  6. Bryant, S.L., Schechter, R.S., and Lake, L.W. (1987) Mineral sequences in precipitation/ dissolution waves. AIChE J. 33, 1271.CrossRefGoogle Scholar
  7. Bunge, A.L., and Radke, C.J. (1980) Divalent ion exchange with alkali. SPE 8895, 1980 SPE Int. Symp. on Oilfield and Geothermal Chemistry, Soc. of Pet. Eng. of AIME, Stanford University (May 28–30 ).Google Scholar
  8. Casey, W.H. (1987) Heterogeneous kinetics and diffusion boundary layers: The example of reaction in a fracture. J. Geophys. Res. 92, 8007–8013.CrossRefGoogle Scholar
  9. Frantz, J.D., and Mao, H.K. (1974) Bimetasomatism resulting from integranular diffusion. Multimineralic zone sequences, Carnegie Institution of Washington Yearbook, Geo physi. Lab. 74, 417–424.Google Scholar
  10. Frantz, J.D., and Mao, H.K. (1976) Bimetasomatism resulting from intergranular diffu¬sion: I. A theoretical model for monomineralic reaction zone sequences. Amer. J. Sci. 276, 817–840.CrossRefGoogle Scholar
  11. Frantz, J.D., and Mao, H.K. (1979) Bimetasomatism resulting from intergranular diffusion: II. Prediction of multimineralic zone sequences. Amer. J. Sci. 297, 302–323.CrossRefGoogle Scholar
  12. Gordon, M. Jr., Tracy J.I., and Ellis, M.W. (1985) Geology of the Arkansas bauxite region. Geological Survey Professional Paper, no. 299, 268, pp.Google Scholar
  13. Granger, H.C., and Warren, C.G. (1969) Unstable sulfur compounds and the origin of roll-type uranium deposits. Econ. Geol. 64, 160–171.CrossRefGoogle Scholar
  14. Helfferich, F. (1989) The theory of precipitation/dissolution waves, AIChE J. 35, 75.CrossRefGoogle Scholar
  15. Helgeson, H.C (1972) Kinetics of mass transfer among silicates and aqueous solutions: Correction and clarification. Geochim. Cosmochim. Acta 36, 1067–1070.CrossRefGoogle Scholar
  16. Hofmann, A. (1972) Chromatographic theory of infiltration metasomatism and its application to feldspars. Amer. J. Sci. 272, 69–90.CrossRefGoogle Scholar
  17. James, A.N., and Lupton, A.R.R. (1978) Gypsum and anhydrite in foundations of hydraulic structures. Geótechnique 28, 249–272.CrossRefGoogle Scholar
  18. Kirkner, D.J., Jennings, A.A., and Theis, T.L. (1985) Multisolute mass transport with chemical interaction kinetics. J. Hydrology, 76, 107–117.CrossRefGoogle Scholar
  19. Kopinsky, J., Aris, R., and Cussler, E.L. (1988) Theories of precipitation induced by dissolution. AIChE J. 34, 2005.Google Scholar
  20. Korzhinskii, D.S. (1970) Theory of Metasomatic Zoning (translated by J. Agrell). Clarendon Press, Oxford, 162 pp.Google Scholar
  21. Lasaga, A.C. (1984) Chemical kinetics of water-rock interaction. J. Geophys. Res. 89, 4009–4025.CrossRefGoogle Scholar
  22. Levich, V.G. (1952) Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ, 700 pp.Google Scholar
  23. Lichtner, P.C. (1985) Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochim. Cosmochim. Acta 49, 779–800.CrossRefGoogle Scholar
  24. Lichtner, P.C. (1986) Multiple reaction path model describing mass transfer in geochemical systems, in Proceedings of the Workshop on Geochemical Modeling, Fallen Leaf Lake, edited by K.J. Jackson and W.L. Bourcier, pp. 3–9. CONF-8609134, Lawrence Liver- more National Laboratory, Livermore, California.Google Scholar
  25. Lichtner, P.C. (1988) The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. Geochim. Cosmochim. Acta 52, 143– 165.Google Scholar
  26. Lichtner, P.C., and Balashov, V.N. (1990) Metasomatic zoning: Appearance of ghost zones in the limit of pure advective mass transport. In preparation.Google Scholar
  27. Lichtner, P.C., Helgeson, H.C., and Murphy, W.M. (1987) Lagrangian and Eulerian representations of metasomatic alteration of minerals, in Proc. NATO Advanced Study Institute on Chemical Transport in Metasomatic Processes, edited by H.C. Helgeson, pp. 519–545. Reidel, Dordrecht.Google Scholar
  28. Lichtner, P.C., Oelkers, E.H., and Helgeson, H.C. (1986a) Comparison of exact and numerical finite difference calculations to the moving boundary problem resulting from aqueous diffusion coupled to precipitation/dissolution of a stationary solid phase. J. Geophys. Res. 91, 7531–7544.CrossRefGoogle Scholar
  29. Lichtner, P.C., Oelkers, E.H., and Helgeson, H.C. (1986b) Interdiffusion wit multiple precipitation/dissolution reactions: Transient model and the steady-state limit. Geochim. Cosmochim. Acta 50, 1951–1966.CrossRefGoogle Scholar
  30. Lighthill, M.J. (1958) Introduction to Fourier Analysis and Generalized Functions. Cambridge University Press, Cambridge, UK, 79 pp.Google Scholar
  31. Mundell J.A., and Kirkner J.D. (1988) Numerical studies of dissolution-induced moving boundary problems from aqueous diffusion in porous media. J. Geophys. Res. 93, 10,397–10, 407.Google Scholar
  32. Murphy, W.M., Oelkers, E.H., and Lichtner, P.C. (1990) Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes. Chem. Geol. In press.Google Scholar
  33. Nguyen, Y.V., Gray, W.G., Pinder, G.F., Botha, J.F, and Crerar, D.A. (1982) A theoretical investigation on the transport of chemicals in reactive porous media. Water Resources Research, 18, 1149–1156.CrossRefGoogle Scholar
  34. Norton, D., and Taylor, H.P. Jr. (1979) Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: An analysis of the Skaergaard intrusion. J. Petrology 20, 421–486.Google Scholar
  35. Novak, C.F., Schechter, R.S., and Lake, L.W. (1988) Rule-based mineral sequences in geochemical flow processes. AIChE J. 34, 1607–1614.CrossRefGoogle Scholar
  36. Novak, C.F., Schechter, R.S., and Lake, L.W. (1989) Diffusion and solid dissolution/ precipitation in permeable media. AIChE J. 35, 1057–1072.CrossRefGoogle Scholar
  37. Oelkers, E.H., and Helgeson, H.C. (1988) Calculation of te thermodynamic and transport properties of aqueous species at high pressures and temperatures: Aqueous tracer diffusion coefficients of ions to 1000° and 5 kb. Geochim. Cosmochim. Acta 52, 63–85.CrossRefGoogle Scholar
  38. Ortoleva, P., Auchmuth, G., Chadam, J., Hettmer, J., Merino, E., Moore, C.H., and Ripley, E. (1986) Redox front propagation and banding modalities. Physica 19D, 334–354.Google Scholar
  39. Ortoleva, P., Merino, E., Moore, C.H., and Chadam, J. (1987) Geochemical self- organization, I. Reaction-transport feedbacks and modeling approach. Amer. J. Sci. 287, 979–1007.CrossRefGoogle Scholar
  40. Rege, S.D., and Fogler, H.S. (1989) Competition among flow, dissolution, and precipitation in porous media, 35, 1177–1185.Google Scholar
  41. Rubin, J. (1983) Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions. Water Resources Research 19, 1231–1252.CrossRefGoogle Scholar
  42. Schechter, R.S., Bryant, S.L., and Lake, L.W. (1987) Isotherm-free chromatography: Propagation of precipitation/dissolution waves. Chem. Eng. Comm. 58, 353–376.CrossRefGoogle Scholar
  43. Stanley, N.D. (1964) Silica in streams and ground water. Amer. J. Sci. 262, 870–891.CrossRefGoogle Scholar
  44. Wagman, D.D., Evans, W.H, Parker, Y.B., Schumm, R.H., Harlow, I., Bailey, S.M., Churney, K.L., and Nuttall, R.L. (1982) The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data 11 (Suppl. 2), 1–392.Google Scholar
  45. Walsh, M.P., Bryant, S.L., Schechter, R.S., and Lake, L.W. (1984) Precipitation and dissolution of solids attending flow through porous media. Amer. Inst. Chem. Eng. J. 30, 317–327.CrossRefGoogle Scholar
  46. Weare, J.H., Stephens, J.R., and Eugster, H.P. (1976) Diffusion metasomatism and mineral reaction zones: General principles and applications to feldspar alteration. Amer. J. Sci. 276, 767–816.CrossRefGoogle Scholar
  47. Weyl, P.K. (1958) The solution kintics of calcite. J. Geol. 66, 163–176.CrossRefGoogle Scholar
  48. Wolery, T.J. (1983) EQ3NR, a computer program for geochemical aqueous speciation- solubility calculations: User’s guide and documentation, UCRL-53414, Lawrence Livermore Laboratory, 191 pp.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Peter C. Lichtner

There are no affiliations available

Personalised recommendations