Skip to main content

Real-Time Obstacle Avoidance for Manipulators and Mobile Robots

  • Chapter
Book cover Autonomous Robot Vehicles

Abstract

This paper presents a unique real-time obstacle avoidance approach for manipulators and mobile robots based on the artificial potential field concept. Collision avoidance, traditionally considered a high level planning problem, can be effectively distributed between different levels of control, allowing real-time robot operations in a complex environment. This method has been extended to moving obstacles by using a time-varying artificial potential field. We have applied this obstacle avoidance scheme to robot arm mechanisms and have used a new approach to the general problem of real-time manipulator control. We reformulated the manipulator control problem as direct control of manipulator motion in operational space—the space in which the task is originally described—rather than as control of the task’s corresponding joint space motion obtained only after geometric and kinematic transformation. Outside the obstacles’ regions of influence, we caused the end effector to move in a straight line with an upper speed limit. The artificial potential field approach has been extended to collision avoidance for all manipulator links. In addition, a joint space artificial potential field is used to satisfy the manipulator internal joint constraints. This method has been implemented in the COSMOS system for a PUMA 560 robot. Real-time collision avoidance demonstrations on moving obstacles have been performed by using visual sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brooks, R. 1983. Solving the find-path problem by good representation of free space. IEEE Sys., Man Cyber. SMC-13: 190–197.

    MathSciNet  Google Scholar 

  • Brooks, R. 1984 Aug. 20–23, Kyoto, Japan. Aspects of mobile robot visual map making. 2nd Int. Symp. Robotics Res.

    Google Scholar 

  • Buckley, C. 1985. The application of continuum methods to path planning. Ph.D. Thesis (in progress). Stanford University, Department of Mechanical Engineering.

    Google Scholar 

  • Chatila, R. 1981. Système de navigation pour un robot mobile autonome: modélisation et processus décisionnels. Thèse de Docteur-Ingénieur. Université Paul Sabatier. Toulouse, France.

    Google Scholar 

  • Hogan, N. 1984 June 6–8, San Diego, California. Impedance control: an approach to manipulation. 1984 Amer. Control Conf.

    Google Scholar 

  • Khatib, O., Llibre, M. and Mampey, R. 1978. Fonction decision-commande d’un robot manipulateur. Rapport No. 2/7156. DERA/CERT. Toulouse, France.

    Google Scholar 

  • Khatib, O. and Le Maitre, J. F. 1978 September 12–15, Udine, Italy. Dynamic control of manipulators operating in a complex environment. Proc. 3rd CISM-IFToMM Symp. Theory Practice Robots Manipulators, 267–282. Elsevier. 1979.

    Google Scholar 

  • Khatib, O. 1980. Commande dynamique dans l’espace opérationnel des robots manipulateurs en présence d’obstacles. These de Docteur-Ingénieur. École Nationale Supérieure de l’Aéronautique et de l’Espace ( ENSAE ). Toulouse, France.

    Google Scholar 

  • Khatib, O. 1983 December 15–20, New Delhi. Dynamic control of manipulators in operational space. 6th CISM-IFToMM Congress Theory Machines Mechanisms, 1128–1131.

    Google Scholar 

  • Khatib, O., et al. 1984 June, Robotics in three acts (Film). Stanford University. Artificial Intelligence Laboratory.

    Google Scholar 

  • Khatib, O. 1985 September 11–13, Tokyo. The operational space formulation in robot manipulators control. 15th Int. Symp. Indust. Robots.

    Google Scholar 

  • Khatib, O. and Burdick, J. 1985 November, Miami, Florida. Dynamic optimization in manipulator design: the operational space formulation. ASME Winter Annual Meeting.

    Google Scholar 

  • Khatib, O., Burdick, J., and Armstrong, B. 1985. Robotics in three acts-Part II (Film). Stanford University, Artificial Intelligence Laboratory.

    Google Scholar 

  • Krogh, B. 1984 August, Bethlehem, Pennsylvania. A generalized potential field approach to obstacle avoidance control. SME Conf. Proc. Robotics Research: The Next Five Years and Beyond.

    Google Scholar 

  • Kuntze, H. B., and Schill, W. 1982 June 9–11, Paris. Methods for collision avoidance in computer controlled industrial robots. 12th ISIR.

    Google Scholar 

  • Lozano-Perez, T. 1980. Spatial planning: a configuration space approach. AI Memo 605. Cambridge, Mass. MIT Artificial Intelligence Laboratory.

    Google Scholar 

  • Moravec, H. P. 1980. Obstacle avoidance and navigation in the real world by a seeing robot rover. Ph.D. Thesis. Stanford University, Artificial Intelligence Laboratory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Massachusetts Institute of Technology

About this chapter

Cite this chapter

Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In: Cox, I.J., Wilfong, G.T. (eds) Autonomous Robot Vehicles. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8997-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8997-2_29

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8999-6

  • Online ISBN: 978-1-4613-8997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics