Skip to main content

Electrophysiology and Aging: Slowing, Inhibition, and Aerobic Fitness

  • Chapter
Cognitive and Behavioral Performance Factors in Atypical Aging

Abstract

Just as gray hair and wrinkles are the physical hallmarks of aging, certain behavioral characteristics distinguish the old from the young. In general, elderly people are slower, have poorer memory, and are less able to solve complex or novel problems. These age-related changes are typically attributed to degenerative processes in the central nervous system (CNS) and are reflected in the brain’s electrical activity. The electroencephalogram (EEG) and event-related potentials (ERPs) have been used extensively to study changes in brain function throughout development and adult aging. In this chapter, literature describing age differences in EEG and ERPs are reviewed and the hypothesis that these electrophysiological measures reflect slowing and a relative inflexibility of function within the CNS are developed. It is proposed that some age differences in EEG and ERPs are the result of reduced CNS functioning and that changes in inhibitory strength may underlie age-related decline in cognitive abilities, particularly those that require “mental flexibility.” Also reviewed and discussed are recent and exciting findings indicating that variability of some behavioral and electrophysiological measures may be related to individual differences in frequency and intensity of physical activity and resulting cardiovascular fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, H.C., & Himwich, W.A. (1970). Amino acids, proteins and monoamines of developing brain. In W.A. Himwich (Ed.), Developmental neurobiology (pp. 287–310). Springfield, IL: C.C. Thomas.

    Google Scholar 

  • Allison, T., Hume, A.L., Wood, C.C., & Goff, W.R. (1984). Developmental and aging changes in somatosensory, auditory and visual evoked potentials. Electroencephalography and Clinical Neurophysiology, 58, 14–24.

    Google Scholar 

  • Allison, T., Wood, C.C., & Goff, W.R. (1983). Brain stem auditory, pattern-reversal visual, and short-latency somatosensory evoked potentials: Latencies in relation to age, sex, and brain and body size. Electroencephalography and Clinical Neurophysiology, 55, 619–636.

    Google Scholar 

  • American College of Sports Medicine (ACSM) (1986). Guidelines for graded exercise testing and exercise prescription. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Asselman, P., Chadwick, D.W., & Marsden, C.D. (1975). Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis. Brain, 98, 261–282.

    Google Scholar 

  • Barbeau, A. (1980). Biochemical aging in Parkinson’s disease. In L. Amaducci, A.N. Davison, & P. Antuono (Eds.), Aging of the brain and dementia (pp. 275–285). New York: Raven Press.

    Google Scholar 

  • Barnet, A.B., & Lodge, A. (1967). Click evoked EEG responses in normal and developmentally retarded infants. Nature, 214, 252–255.

    Google Scholar 

  • Barnet, A.B., Ohlrich, E.S., & Shanks, B.L. (1971). EEG evoked responses to repetitive auditory stimulation in normal and Down’s syndrome infants. Developmental Medicine and Child Neurology, 13, 321–329.

    Google Scholar 

  • Beasley, B.A.L., & Ford, D.H. (1976). Aging and the extrapyramidal system. Medical Clinics of North America, 60, 1315–1324.

    Google Scholar 

  • Beck, C.H.M. (1978). Functional implications of changes in the senescent brain: A review. Canadian Journal of Neurological Sciences, 5, 417–424.

    Google Scholar 

  • Beck, E.C. (1975). Electrophysiology and behavior. Annual Review of Psychology, 26, 233–262.

    Google Scholar 

  • Beck, E.C., & Dustman, R.E. (1975). Changes in evoked responses during maturation and aging in man and macaque. In N. Burch & H.L. Altshuler (Eds.), Behavior and brain electrical activity (pp. 431–472). New York: Plenum Press.

    Google Scholar 

  • Beck, E.C., Swanson, C., & Dustman, R.E. (1980). Long latency components of the visually evoked potential in man: Effects of aging. Experimental Aging Research, 6, 523–545.

    Google Scholar 

  • Benda, C.E. (1969). Down’s syndrome. New York: Grune & Stratton.

    Google Scholar 

  • Berger, H. (1929). Uber das Elektrenkephalogramm des Menschen. Archiv fur Psychiatrie und Nervenkrankheiten, 87, 527–570.

    Google Scholar 

  • Bigum, H.B., Dustman, R.E., & Beck, E.C. (1970). Visual and somatosensory evoked responses from mongoloid and normal children. Electroencephalography and Clinical Neurophysiology, 28, 576–585.

    Google Scholar 

  • Birren, J.E., Woods, A.M., & Williams, M.V. (1979). Speed of behavior as an indicator of age changes and the integrity of the nervous system. In F. Hoffmeister & C. Muller (Eds.), Brain function in old age (pp. 10–44). Berlin: Springer-Verlag.

    Google Scholar 

  • Blackburn, H. (1983). Physical activity and coronary heart disease: A brief update and population view (Part I). Journal of Cardiac Rehabilitation, 3, 101–111.

    Google Scholar 

  • Bloom, F.E., Lazerson, A., & Hofstadter, L. (1985). Brain, mind, and behavior. New York: W.H. Freeman.

    Google Scholar 

  • Bodis-Wollner, I., Onofrj, M.C., Marx, M.S., & Mylin, L.H. (1986). Visual evoked potentials in Parkinson’s disease: Spatial frequency, temporal rate, contrast, and the effect of dopaminergic drugs. In R.Q. Cracco & I. Bodis-Wollner (Eds.), Evoked potentials (pp. 307–319). New York: Alan R. Liss.

    Google Scholar 

  • Bondareff, W. (1977). The neural basis of aging. In J.E. Birren & K.W. Schaie (Eds.), Handbook of the psychology of aging (pp. 157–176). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Bortz, W.M. (1982). Disuse and aging. Journal of the American Medical Association, 248, 1203–1208.

    Google Scholar 

  • Bortz, W.M. (1985). Physical exercise as an evolutionary force. Journal of Human Evolution, 14, 145–155.

    Google Scholar 

  • Botwinick, J. (1973). Aging and behavior. New York: Springer.

    Google Scholar 

  • Brizzee, K.R. (1981). Structural correlates of the aging process in the brain. Psychopharmacology Bulletin, 17, 43–52.

    Google Scholar 

  • Brody, H. (1973). Aging of the vertebrate brain. In M. Rockstein (Ed.), Development and aging in the nervous system (pp. 121–133). New York: Academic Press.

    Google Scholar 

  • Brown, B.S., Payne, T., Kim, C., Moore, G., Krebs, P., & Martin, W. (1979). Chronic response of rat brain norepinephrine and serotonin levels to endurance training. Journal of Applied Physiology, 46, 19–23.

    Google Scholar 

  • Brown, B.S., & Van Huss, W. (1973). Exercise and rat brain catecholamines. Journal of Applied Physiology, 34, 664–669.

    Google Scholar 

  • Brown, W.S., Marsh, J.T., & LaRue, A. (1983). Exponential electrophysiological aging: P3 latency. Electroencephalography and Clinical Neurophysiology, 55, 277–285.

    Google Scholar 

  • Bruneau, N., Barthelemy, C., Jouve, J., & Lelord, G. (1986). Frontal auditory-evoked potential augmenting-reducing and urinary homovanillic acid. Neuropsychobiology, 16, 78–84.

    Google Scholar 

  • Buchsbaum, M. (1976). Self-regulation of stimulus intensity: Augmenting/reducing and the average evoked response. In G.E. Schwartz & D. Shapiro (Eds.), Consciousness and self-regulation (pp. 101–135). New York: Plenum Press.

    Google Scholar 

  • Buchsbaum, M.S., & Silverman, J. (1968). Stimulus intensity control and the cortical evoked response. Psychosomatic Medicine, 30, 12–22.

    Google Scholar 

  • Bulens, C., Meerwaldt, J.D., van der Wildt, G.J., & Keemink, C.J. (1986). Contrast sensitivity in Parkinson’s disease. Neurology, 36, 1121–1125.

    Google Scholar 

  • Callner, D.A., Dustman, R.E., Madsen, J.A., Schenkenberg, T., & Beck, E.C. (1978). Life span changes in the averaged evoked responses of Down’s syndrome and nonretarded persons. American Journal of Mental Deficiency, 82, 398–405.

    Google Scholar 

  • Campbell, B.A., Lytle, L.D., & Fibiger, G.C. (1969). Ontogeny of adrenergic arousal and cholinergic inhibitory mechanisms in the rat. Science, 166, 635–637.

    Google Scholar 

  • Carlson, N.R. (1977). Physiology of behavior. Boston: Allyn and Bacon.

    Google Scholar 

  • Caspersen, C.J., Christenson, G.M., & Pollard, R.A. (1986). Status of the 1990 physical fitness and exercise objectives—evidence from NHIS 1985. Public Health Reports, 101, 587–592.

    Google Scholar 

  • Celesia, G.G., & Daly, R.F. (1977). Effects of aging on visual evoked responses. Archives of Neurology, 34, 403–407.

    Google Scholar 

  • Chotas, H.G., Bourne, J.R., & Teschan, P.E. (1979). Heuristic techniques in the quantification of the electroencephalogram in renal failure. Computers in Biomedical Research, 12, 299–312.

    Google Scholar 

  • Chu, N-S. (1985). Age-related latency changes in the brain-stem auditory evoked potentials. Electroencephalography and Clinical Neurophysiology, 62, 431–436.

    Google Scholar 

  • Clarkson, P.M., & Kroll, W. (1978). Practice effects on fractionated response time related to age and activity level. Journal of Motor Behavior, 10, 257–286.

    Google Scholar 

  • Coben, L.A., Danziger, W.L., & Hughes, C.P. (1983). Visual evoked potentials in mild senile dementia of Alzheimer type. Electroencephalography and Clinical Neurophysiology, 55, 121–130.

    Google Scholar 

  • Coleman, M., & Mahanand, D. (1973). Baseline serotonin levels in Down’s syndrome patients. In M. Coleman (Ed.), Serotonin in Down’s syndrome (pp. 5–24). New York: American Elsevier.

    Google Scholar 

  • Cooper, K.H. (1977). The aerobics way. New York: Evans.

    Google Scholar 

  • Cosi, V., Vitelli, E., Gozzoli, L., Corona, A., Ceroni, M., & Callieco, R. (1982). Visual evoked potentials in aging of the brain. In J. Courjon, F. Mauguiere, & M. Revol (Eds.), Clinical applications of evoked potentials in neurology (pp. 109–115). New York: Raven Press.

    Google Scholar 

  • Courville, C.B. (1955). Effects of alcohol on the nervous system of man. Los Angeles: San Lucas.

    Google Scholar 

  • Creasey, H., & Rapoport, S.I. (1985). The aging human brain. Annals of Neurology, 17, 2–10.

    Google Scholar 

  • Davis, J.N., Carlsson, A., MacMillan, V., & Siesjo, B.K. (1973). Brain tryptophan hydroxylation: Dependence on arterial oxygen tension. Science, 182, 72–74.

    Google Scholar 

  • Davis, J.N., Giron, L.T., Stanton, E., & Maury, W. (1979). The effects of hypoxia on brain neurotransmitter systems. In S. Fahn, J.N. Davis, & L.P. Rowland (Eds.), Cerebral hypoxia and its consequences (Advances in neurology, Vol. 26, pp. 219–223). New York: Raven Press.

    Google Scholar 

  • DeCastro, J.M., & Duncan, G. (1985). Operantly conditioned running: Effects on brain catecholamine concentrations and receptor densities in the rat. Pharmacology, Biochemistry and Behavior, 23, 495–500.

    Google Scholar 

  • DeVries, H.A. (1975). Physiology of exercise and aging. In D.S. Woodruff & J.E. Birren (Eds.), Aging (pp. 257–276). New York: Van Nostrand.

    Google Scholar 

  • Diamond, S., Balvin, R.S., & Diamond, F.R. (1963). Inhibition and choice. New York: Harper & Row.

    Google Scholar 

  • Donchin, E., Ritter, W., & McCallum, W.C. (1978). Cognitive psychophysiology: The endogenous components of the ERP. In E. Callaway, P. Tueting & S.H. Koslow (Eds.), Event-related brain potentials in man (pp. 349–411). New York: Academic Press.

    Google Scholar 

  • Dorfman, L.J., & Bosley, T.M. (1979). Age-related changes in peripheral and central nerve conduction in man. Neurology, 29, 38–44.

    Google Scholar 

  • Douglas, W.W. (1975). Histamine and antihistamines: 5-hydroxytryptamine and antagonists. In L.S. Goodman & A. Gilman (Eds.), The pharmacological basis of therapeutics (pp. 590–629). New York: Macmillan.

    Google Scholar 

  • Drechsler, F. (1975). Sensory action potentials of the median and ulnar nerves in aged persons. In K. Kunze & J.E. Desmedí (Eds.), Studies on neuromuscular diseases (pp. 232–235). Basel: Karger.

    Google Scholar 

  • Drechsler, F. (1978). Quantitative analysis of neurophysiological processes of the aging CNS. Journal of Neurology, 218, 197–213.

    Google Scholar 

  • Dustman, R.E., & Beck, E.C. (1969). The effects of maturation and aging on the wave form of visually evoked potentials. Electroencephalography and Clinical Neurophysiology, 26, 2–11.

    Google Scholar 

  • Dustman, R.E., & Caliner, D.A. (1979). Cortical evoked responses and response decrement in nonretarded and Down’s syndrome individuals. American Journal of Mental Deficiency, 83, 391–397.

    Google Scholar 

  • Dustman, R.E., Emmerson, R.Y., Ruhling, R.O., Shearer, D.E., Steinhaus, L.A., Johnson, S.C., Bonekat, W.H., & Shigeoka, J.W. (in press). Age and fitness effects on EEG, ERPs, visual sensitivity and cognition. Neurobiology of Aging.

    Google Scholar 

  • Dustman, R.E., LaMarche, J.A., Cohn, N.B., Shearer, D.E., & Talone, J.M. (1985). Power spectral analysis and cortical coupling of EEG for young and old normal adults. Neurobiology of Aging, 6, 193–198.

    Google Scholar 

  • Dustman, R.E., & Ruhling, R.O. (1986). Brain function of old and young athletes and nonathletes. The Gerontologist, 26, A115.

    Google Scholar 

  • Dustman, R.E., Ruhling, R.O., Russell, E.M., Shearer, D.E., Bonekat, H.W., Shigeoka, J.W., Wood, J.S., & Bradford, D.C. (1984). Aerobic exercise training and improved neuropsychological function of older individuals. Neurobiology of Aging, 5, 35–42.

    Google Scholar 

  • Dustman, R.E., & Shearer, D.E. (1987). Electrophysiological evidence for central inhibitory deficits in old age. In R.J. Ellingson, N.M.F. Murray, & A.M. Halliday (Eds.), The London symposia, (EEG Suppl. 39, pp. 408–412). Amsterdam: Elsevier.

    Google Scholar 

  • Dustman, R.E., Shearer, D.E., & Snyder, E.W. (1982). Age differences in augmenting/reducing of occipital visually evoked potentials. Electroencephalography and Clinical Neurophysiology, 54, 99–110.

    Google Scholar 

  • Dustman, R.E., & Snyder, E.W. (1981). Life-span changes in visually evoked potentials at central scalp. Neurobiology of Aging, 2, 303–308.

    Google Scholar 

  • Dustman, R.E., Snyder, E.W., & Schlehuber, C.J. (1981). Life-span alterations in visually evoked potentials and inhibitory function. Neurobiology of Aging, 2, 187–192.

    Google Scholar 

  • Dyer, R.S., Howell, W.E., & MacPhail, R.C. (1981). Dopamine depletion slows retinal transmission. Experimental Neurology, 71, 326–340.

    Google Scholar 

  • Elsayed, M., Ismail, A.H., & Young, R.J. (1980). Intellectual differences of adult men related to age and physical fitness before and after an exercise program. Journal of Gerontology, 35, 383–387.

    Google Scholar 

  • Emmerson, R.Y., Dustman, R.E., Ruhling, R.O., Shearer, D.E., Steinhaus, L.A., & Chamberlin, H.M. (1986). Aerobic fitness and event-related potentials. Electroencephalography and Clinical Neurophysiology, 64, 79P.

    Google Scholar 

  • Emmerson, R.Y., Dustman, R.E., Shearer, D.E., & Turner, C.W. (in press). P3 latency and symbol digit performance correlation in aging. Experimental Aging Research.

    Google Scholar 

  • Feldman, M.L. (1976). Aging changes in the morphology of cortical dendrites. In R.D. Terry & S. Gershon (Eds.), Neurobiology of aging (pp. 211–227). New York: Raven Press.

    Google Scholar 

  • Fishbein, H.D. (1976). Evolution, development and children’s learning. Pacific Palisades, CA: Goodyear.

    Google Scholar 

  • Folsom, R.C., Widen, J.E., & Wilson, W.R. (1983). Auditory brain-stem responses in infants with Down’s syndrome. Archives of Otolaryngology, 109, 607–610.

    Google Scholar 

  • Frager, J., Barnet, A., Weiss, I., & Coleman, M. (1985). A double blind study of vitamin B6 in Down’s syndrome infants. Part 2—cortical auditory evoked potentials. Journal of Mental Deficiency Research, 29, 241–246.

    Google Scholar 

  • Gaches, J. (1960). Etude statistique sur les traces “alpha largement developpe” en fonction de l’age. La Presse Medicale, 68, 1620–1622.

    Google Scholar 

  • Galbraith, G.C., Squires, N., Altair, D., & Gliddon, J.B. (1979). Electrophysiological assessments in mentally retarded individuals: From brainstem to cortex. In H. Begleiter (Ed.), Evoked brain potentials and behavior (pp. 229–245). New York: Plenum Press.

    Google Scholar 

  • Ghilardi, M.F., Onofrj, M., Bodis-Wollner, I., Marx, M.S., & Glover, A. (1988). Stimulus-specific action of dopamine in the visual system of Parkinson’s disease (PD) patients and MPTP-treated monkeys. Electroencephalography and Clinical Neurophysiology, 69, 32P.

    Google Scholar 

  • Gibson, G.E., & Peterson, C. (1982). Biochemical and behavioral parallels in aging and hypoxia. In E. Giacobini, G. Filogamo, G. Giacobini, & A. Vernadakis (Eds.), Cellular and molecular mechanisms of aging in the nervous system (pp. 107–122). New York: Raven Press.

    Google Scholar 

  • Gibson, G.E., Peterson, C., & Jenden, D.J. (1981). Brain acetylcholine synthesis declines with senescence. Science, 213, 674–676.

    Google Scholar 

  • Gibson, G.E., Pulsinelli, W., Blass, J.P., & Duffy, T.E. (1981). Brain dysfunction in mild to moderate hypoxia. American Journal of Medicine, 70, 1247–1254.

    Google Scholar 

  • Gilliam, P.E., Spirduso, W.W., Martin, T.P., Walters, T.J., Wilcox, R.E., & Farrar, R.P. (1984). The effects of exercise training on [3H]-spiperone binding in rat striatum. Pharmacology, Biochemistry and Behavior, 20, 863–867.

    Google Scholar 

  • Glaser, G.H. (1963). The normal electroencephalogram and its reactivity. In G.H. Glaser (Ed.), EEG and behavior (pp. 3–23). New York: Basic Books.

    Google Scholar 

  • Gliddon, J.B., Busk, J., & Galbraith, G.C. (1975). Visual evoked responses as a function of light intensity in Down’s syndrome and nonretarded subjects. Psychophysiology, 12, 416–422.

    Google Scholar 

  • Goldman, P.S., & Alexander, G.E. (1977). Maturation of prefrontal cortex in the monkey revealed by local reversible cryogenic depression. Nature, 267, 613–615.

    Google Scholar 

  • Goodin, D.S., & Aminoff, M.J. (1986). Electrophysiological differences between subtypes of dementia. Brain, 109, 1103–1113.

    Google Scholar 

  • Goodin, D.S., Squires, K.C., Henderson, B.H., & Starr, A. (1978). Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroencephalography and Clinical Neurophysiology, 44, 447–458.

    Google Scholar 

  • Gotham, A.M., Brown, R.G., & Marsden, C.D. (1988). ‘Frontal’ cognitive function in patients with Parkinson’s disease on and off levodopa. Brain, 111, 299–321.

    Google Scholar 

  • Gottfries, C.G., Knorring, L. von, & Perris, C. (1976). Neurophysiological measures related to levels of 5-hydroxyindoleacetic acid, homovanillic acid and tryptophan in cerebrospinal fluid of psychiatric patients. Neuropsychobiology, 2, 1–8.

    Google Scholar 

  • Gross, P.M., Marcus, M.L., & Heistad, D.D. (1980). Regional distribution of cerebral blood flow during exercise in dogs. Journal of Applied Physiology, 48, 213–217.

    Google Scholar 

  • Hansch, E.C., Syndulko, K., Cohen, S.N., Goldberg, Z.I., Potvin, A.R., & Tourtellotte, W.W. (1982). Cognition in Parkinson’s disease: An event-related potential perspective. Annals of Neurology, 11, 599–607.

    Google Scholar 

  • Harding, G.F.A., Wright, C.E., & Orwin, A. (1985). Primary presenile dementia: The use of the visual evoked potential as a diagnostic indicator. British Journal of Psychiatry, 147, 532–539.

    Google Scholar 

  • Harkins, S.W. (1981). Effects of presenile dementia of the Alzheimer’s type on brainstem transmission time. International Journal of Neuroscience, 15, 165–170.

    Google Scholar 

  • Harter, M.R. (1971). Visually evoked cortical responses to the on- and off-set of patterned light in humans. Vision Research, 11, 685–695.

    Google Scholar 

  • Henderson, G., Tomlinson, B.E., & Gibson, P.H. (1980). Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. Journal of the Neurological Sciences, 46, 113–136.

    Google Scholar 

  • Heston, L.L. (1982). Alzheimer’s dementia and Down’s syndrome: Genetic evidence suggesting an association. In F.M. Sinex & CR. Merril (Eds.), Alzheimer’s disease, Down’s syndrome, and aging (pp. 29–37). New York: The New York Academy of Sciences.

    Google Scholar 

  • Hornykiewicz, O. (1985). Brain dopamine and ageing. Interdisciplinary Topics in Gerontology, 19, 143–155.

    Google Scholar 

  • Hoyer, W.J., & Plude, D.J. (1980). Attentional and perceptual processes in the study of cognitive aging. In L.W. Poon (Ed.), Aging in the 1980s (pp. 227–238). Washington, DC: American Psychological Association.

    Google Scholar 

  • Hubel, D.H., & Wiesel, T.N. (1962). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society, B 198, 1–59.

    Google Scholar 

  • Ingvar, D.H. (1978). Clinical neurophysiology of the cerebral circulation. In W.A. Cobb & H. van Duijn (Eds.), Contemporary clinical neurophysiology, (EEG Suppl. 34, pp. 71–81). Amsterdam: Elsevier.

    Google Scholar 

  • Ismail, A.H., & El-Naggar, A.M. (1981). Effect of exercise on cognitive processing in adult men. Journal of Human Ergology, 10, 83–91.

    Google Scholar 

  • Jakubczak, L.F. (1967). Psychophysiological aging. Gerontologist, 7, 67–72.

    Google Scholar 

  • Katz, R.I., & Harner, R.N. (1984). Electroencephalography in aging. In M.L. Albert (Ed.), Clinical neurology of aging (pp. 114–138). New York: Oxford University Press.

    Google Scholar 

  • Kelly-Ballweber, D., & Dobie, R.A. (1984). Binaural interaction measured behaviorally and electrophysiologically in young and old adults. Audiology, 23, 181–194.

    Google Scholar 

  • Kjaer, M. (1980). Recognizability of brain stem auditory evoked potential components. Acta Neurologica Scandinavica, 62, 20–33.

    Google Scholar 

  • Klorman, R., Thompson, L.W., & Ellingson, R.J. (1978). Event related brain potentials across the life span. In E. Callaway, P. Tueting, & S.H. Koslow (Eds.), Event-related brain potentials in man (pp. 511–570). New York: Academic Press.

    Google Scholar 

  • Knorring, L. von (1976). Visual averaged evoked responses in patients suffering from alcoholism. Neuropsychobiology, 2, 233–238.

    Google Scholar 

  • Knorring, L. von, Monakhov, K., & Perris, C. (1978). Augmenting/reducing: An adaptive switch mechanism to cope with incoming signals in healthy subjects and psychiatric patients. Neuropsychobiology, 4, 150–179.

    Google Scholar 

  • Knorring, L. von, & Oreland, L. (1978). Visual averaged evoked responses and platelet monoamine oxidase activity as an aid to identify a risk group for alcoholic abuse. A preliminary study. Progress in Neuro-Psychopharmacology, 2, 385–392.

    Google Scholar 

  • Kraiuhin, C., Gordon, E., Stanfield, P., Meares, R., & Howson, A. (1986). P300 and the effects of aging: Relevance to the diagnosis of dementia. Experimental Aging Research, 12, 187–192.

    Google Scholar 

  • Kraus, H., & Raub, W. (1961). Hypokinetic disease. Springfield, IL: C.C. Thomas.

    Google Scholar 

  • Lake, C.R., Ziegler, M.G., Coleman, M., & Kopin, I.J. (1979). Evaluation of the sympathetic nervous system in trisomy-21 (Down’s syndrome). Journal of Psychiatric Research, 15, 1–6.

    Google Scholar 

  • Laurian, S., Gaillard, J.-M., & Wertheimer, J. (1982). Evoked potentials in the assessment of brain function in senile dementia. In J. Courjon, F. Mauguiere, & M. Revol (Eds.), Clinical applications of evoked potentials in neurology (pp. 287–293). New York: Raven Press.

    Google Scholar 

  • Lezak, M.D. (1983). Neuropsychological assessment (2nd Ed.). New York: Oxford University Press.

    Google Scholar 

  • Liberson, W.T. (1976). Scalp distribution of somato-sensory evoked potentials and aging. Electromyography and Clinical Neurophysiology, 16, 221–224.

    Google Scholar 

  • Lincoln, A.J., Courchesne, E., Kilman, B.A., & Galambos, R. (1985). Neuropsychological correlates of information-processing by children with Down syndrome. American Journal of Mental Deficiency, 89, 403–414.

    Google Scholar 

  • Lott, I.T. (1982). Down’s syndrome, aging, and Alzheimer’s disease: A clinical review. In F.M. Sinex & CR. Merril (Eds.), Alzheimer’s disease, Down’s syndrome, and aging (pp. 15–27). New York: The New York Academy of Sciences.

    Google Scholar 

  • Luders, H. (1970). The effects of aging on the wave form of the somatosensory cortical evoked potential. Electroencephalography and Clinical Neurophysiology, 29, 450–460.

    Google Scholar 

  • Lukas, J.H., & Siegel, J. (1977). Cortical mechanisms that augment or reduce evoked potentials in cats. Science, 198, 73–75.

    Google Scholar 

  • MacRae, P.G., Spirduso, W.W., Walters, T.J., Farrar, R.P., & Wilcox, R.E. (1987). Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology, 92, 236–240.

    Google Scholar 

  • Man’kovskii, N.B., Belonog, R.P., & Gorbach, L.N. (1978). Evoked potentials to light during aging. Human Physiology, 4, 499–506.

    Google Scholar 

  • McFarland, R.A. (1963). Experimental evidence of the relationship between ageing and oxygen want: In search of a theory of aging. Ergonomics, 6, 339–366.

    Google Scholar 

  • McGeer, E.G., & McGeer, P.L. (1976). Neurotransmitter metabolism in the aging brain. In R.D. Terry & S. Gershon (Eds.), Aging (Vol. 3, pp. 389–403). New York: Raven Press.

    Google Scholar 

  • McGeer, P.L., Eccles, J.C., & McGeer, E.G. (1978). Molecular neurobiology of the mammalian brain. New York: Plenum Press.

    Google Scholar 

  • McGeer, P.L., & McGeer, E.G. (1980). Chemistry of mood and emotion. Annual Review of Psychology, 31, 273–307.

    Google Scholar 

  • Mervis, R. (1978). Structural alterations in neurons of aged canine neocortex: A Golgi study. Experimental Neurology, 62, 417–432.

    Google Scholar 

  • Michalewski, H.J., Rosenberg, C., & Starr, A. (1986). Event-related potentials in dementia. In R.Q. Cracco & I. Bodis-Wollner (Eds.), Evoked potentials (pp. 521–528). New York: Alan R. Liss.

    Google Scholar 

  • Mohr, E., Fabbrini, G., Ruggieri, S., Fedio, P., & Chase, T.N. (1987). Cognitive concomitants of dopamine system stimulation in Parkinsonian patients. Journal of Neurology, Neurosurgery and Psychiatry, 50, 1192–1196.

    Google Scholar 

  • Newman, R.P., LeWitt, P.A., Jaffe, M., Calne, D.B., & Larsen, T.A. (1985). Motor function in the normal aging population: Treatment with levodopa. Neurology, 35, 571–573.

    Google Scholar 

  • Nightingale, S., Mitchell, K.W., & Howe, J.W. (1986). Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. Journal of Neurology, Neurosurgery and Psychiatry, 49, 1280–1287.

    Google Scholar 

  • Norstrand, I.F. (1981). Neurobiology of aging. New York State Journal of Medicine, 81, 956–964.

    Google Scholar 

  • Obrist, W.D. (1976). Problems of aging. In G.E. Chatrian & G.C. Lairy (Eds.), Handbook of electroencephalography and clinical neurophysiology (Vol. 6, part A, pp. 275–292). Amsterdam: Elsevier.

    Google Scholar 

  • Parnavelas, J.G., Globus, A., & Kaups, P. (1973). Continuous illumination from birth affects spine density of neurons in the visual cortex of the rat. Experimental Neurology, 40, 742–747.

    Google Scholar 

  • Petajan, J.H., & Jarcho, L.W. (1975). Motor unit control in Parkinson’s disease and the influence of levodopa. Neurology, 25, 866–869.

    Google Scholar 

  • Petrie, A. (1967). Individuality in pain and suffering. Chicago: University of Chicago Press.

    Google Scholar 

  • Pfefferbaum, A., Wenegrat, B.G., Ford, J.M., Roth, W.T., & Kopell, B.S. (1984). Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia. Electroencephalography and Clinical Neurophysiology, 59, 104–124.

    Google Scholar 

  • Picton, T.W., Stapells, D.R., Perrault, N., Baribeau-Braun, J., & Stuss, D.T. (1984). Human event-related potentials: Current perspectives. In R.H. Nodar & C. Barber (Eds.), Evoked potentials II (pp. 3–16). Boston: Butterworth.

    Google Scholar 

  • Picton, T.W., Stuss, D.T., Champagne, S.C., & Nelson, R.F. (1984). The effects of age on human event-related potentials. Psychophysiology, 21, 312–325.

    Google Scholar 

  • Polich, J., Howard, L., & Starr, A. (1985). Effects of age on the P300 component of the event-related potential from auditory stimuli: Peak identification, variation, and measurement. Journal of Gerontology, 40, 721–726.

    Google Scholar 

  • Powell, R.R. (1974). Psychological effects of exercise therapy upon institutionalized geriatric mental patients. Journal of Gerontology, 29, 157–161.

    Google Scholar 

  • Powell, R.R., & Pohndorf, R.H. (1971). Comparison of adult exercisers and nonexercisers on fluid intelligence and selected physiological variables. The Research Quarterly, 42, 70–77.

    Google Scholar 

  • Pradhan, S.N. (1980). Central neurotransmitters and aging. Life Sciences, 26, 1643–1656.

    Google Scholar 

  • Price, D.L., Whitehouse, P.J., Struble, R.G., Coyle, J.T., Clark, A.W., Delong, M.R., Cork, L.C., & Hedreen, J.C. (1982). Alzheimer’s disease and Down’s syndrome. In F.M. Sinex & C.R. Merril (Eds.), Alzheimer’s disease, Down’s syndrome, and aging (pp. 145–164). New York: The New York Academy of Sciences.

    Google Scholar 

  • Prinz, P.N. (1976). EEG during sleep and waking states. In M.F. Elias, B.E. Eleftheriou, & P.K. Elias (Eds.), Experimental aging research (pp. 135–163). Bar Harbor, ME: EAR, Inc.

    Google Scholar 

  • Psatta, D.M. (1981). Visual evoked potential habituation in mental deficiency. Biological Psychiatry, 16, 729–740.

    Google Scholar 

  • Pullman, S.L., Watts, R.L., Juncos, J.L., Chase, T.N., & Sanes, J.N. (1988). Dopaminergic effects on simple and choice reaction time performance in Parkinson’s disease. Neurology, 38, 249–254.

    Google Scholar 

  • Regan, D. (1972). Evoked potentials in psychology, sensory physiology and clinical medicine. London: Chapman and Hall.

    Google Scholar 

  • Retzlaff, E., & Fontaine, J. (1965). Functional and structural changes in motor neurons with age. In A.T. Welford & J.E. Birren (Eds.), Behavior, aging, and the nervous system (pp. 340–352). Springfield, IL: C.C. Thomas.

    Google Scholar 

  • Roberts, E. (1972). Coordination between excitation and inhibition: Development of the GABA system. In C.D. Clemente, D.P. Purpura, & F.E. Mayer (Eds.), Sleep and the maturing nervous system (pp. 79–98). New York: Academic Press.

    Google Scholar 

  • Rutledge, L.T., Wright, C., & Duncan, J. (1974). Morphological changes in pyramidal cells of mammalian neocortex associated with increased use. Experimental Neurology, 44, 209–228.

    Google Scholar 

  • Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B., & Agid, Y. (1983). Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Research, 275, 321–328.

    Google Scholar 

  • Schafer, E.W.P., & McKean, CM. (1975). Evidence that monoamines influence human evoked potentials. Brain Research, 99, 49–58.

    Google Scholar 

  • Schafer, E.W.P., & Peeke, H.V.S. (1982). Down syndrome individuals fail to habituate cortical evoked potentials. American Journal of Mental Deficiency, 87, 332–337.

    Google Scholar 

  • Schaie, K.W. (1958). Rigidity-flexibility and intelligence: A cross-sectional study of the adult life span from 20 to 70 years. Psychological Monographs: General and Applied, 72, 1–26.

    Google Scholar 

  • Scheibel, A.B. (1979). The hippocampus; Organizational patterns in health and senescence. Mechanisms of Ageing and Development, 9, 89–102.

    Google Scholar 

  • Scheibel, M.E., & Scheibel, A.B. (1975). Structural changes in the aging brain. In H. Brody, D. Harman, & J.M. Ordy (Eds.), Clinical, morphologic, and neurochemical aspects in the aging central nervous system (Aging, Vol. 1, pp. 11–37). New York: Raven Press.

    Google Scholar 

  • Schenkenberg, T. (1970). Visual, auditory and somatosensory evoked responses of normal subjects from childhood to senescence. Unpublished doctoral dissertation, University of Utah.

    Google Scholar 

  • Shagass, C. (1972). Evoked brain potentials in Psychiatry. New York: Plenum Press.

    Google Scholar 

  • Shagass, C., & Schwartz, M. (1965). Age, personality, and somatosensory cerebral evoked responses. Science, 148, 1359–1361.

    Google Scholar 

  • Shaw, N.A. (1984). Changes in the cortical components of the visual evoked potential with age in man. Australian Journal of Experimental Biology and Medical Science, 62, 771–778.

    Google Scholar 

  • Shearer, D.E., & Dustman, R.E. (1980). The pattern reversal evoked potential: The need for laboratory norms. American Journal of EEG Technology, 20, 185–200.

    Google Scholar 

  • Shearer, D.E., Emmerson, R.Y., & Dustman, R.E. (1989). EEG relationships to neural aging in the elderly: Overview and bibliography. American Journal of EEG Technology, 29, 43–63.

    Google Scholar 

  • Shephard, R.J. (1987). Physical activity and aging (2nd ed.). Rockville, MD: Aspen.

    Google Scholar 

  • Sherwood, D.E., & Selder, D.J. (1979). Cardiorespiratory health, reaction time and aging. Medicine and Science in Sports, 11, 186–189.

    Google Scholar 

  • Siegel, S. (1956). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Simpson, D.M., & Erwin, C.W. (1983). Evoked potential latency change with age suggests differential aging of primary somatosensory cortex. Neurobiology of Aging, 4, 59–63.

    Google Scholar 

  • Skinner, J.E. & Yingling, C.D. (1977). Central gating mechanisms that regulate event-related potentials and behavior. A neural model for attention. In J.E. Desmedí (Ed.), Progress in clinical neurophysiology (Vol. 1, pp. 28–68). Basel: S. Karger.

    Google Scholar 

  • Smith, A. (1968). Symbol Digit Modalities Test: A neuropsychologic test for economic screening of learning and other cerebral disorders. Learning Disorders, 3, 83–91.

    Google Scholar 

  • Smith, D.B.D., Thompson, L.W., & Michalewski, H.J. (1980). Averaged evoked potential research in adult aging—status and prospects. In L.W. Poon (Ed.), Aging in the 1980s (pp. 135–151). Washington, DC: American Psychological Association.

    Google Scholar 

  • Snyder, S.H. (1986). Drugs and the brain. New York: Scientific American Library.

    Google Scholar 

  • Spehlmann, R. (1985). Evoked potential primer. Boston: Butterworth.

    Google Scholar 

  • Spilker, B., & Callaway, E. (1969). Effects of drugs on “augmenting and reducing” in averaged visual evoked responses in man. Psychopharmacologia, 15, 116–124.

    Google Scholar 

  • Spirduso, W.W. (1983). Exercise and the aging brain. Research Quarterly for Exercise and Sport. 54, 208–218.

    Google Scholar 

  • Spirduso, W.W., & Clifford, P. (1978). Replication of age and physical activity effects on reaction and movement time. Journal of Gerontology, 33, 26–30.

    Google Scholar 

  • Spirduso, W.W., & Farrar, R.P. (1981). Effects of aerobic training on reactive capacity: An animal model. Journal of Gerontology, 36, 654–662.

    Google Scholar 

  • Spirduso, W.W., MacRae, H.H., MacRae, P.G., Prewitt, J., & Osborne, L. (1988). Exercise effects on aged motor function. Annals of the New York Academy of Sciences, 515, 363–375.

    Google Scholar 

  • Squires, K.C., Chippendale, T.J., Wrege, K.S., Goodin, D.S., & Starr, A. (1980). Electrophysiological assessment of mental function in aging and dementia. In L.W. Poon (Ed.), Aging in the 1980s (pp. 125–134). Washington, DC: American Psychological Association.

    Google Scholar 

  • Squires, N., Aine, C., Buchwald, J., Norman, R., & Galbraith, G. (1980). Auditory brain stem response abnormalities in severely and profoundly retarded adults. Electroencephalography and Clinical Neurophysiology, 50, 172–185.

    Google Scholar 

  • Steinhaus, L.A., Dustman, R.E., Ruhling, R.O., Emmerson, R.Y., Johnson, S.C., Shearer, D.E., Latin, R.W., Shigeoka, J.W., & Bonekat, W.H. (in press). Aerobic capacity of older adults: A training study. Journal of Sports Medicine and Physical Fitness.

    Google Scholar 

  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.

    Google Scholar 

  • Stockard, J.J., Hughes, J.F., and Sharbrough, F.W. (1979). Visually evoked potentials to electronic pattern reversal: Latency variations with gender, age, and technical factors. American Journal of EEG Technology, 19, 171–204.

    Google Scholar 

  • Straumanis, J.J., Shagass, C., & Overton, D.A. (1973a). Auditory evoked responses in young adults with Down’s syndrome and idiopathic mental retardation. Biological Psychiatry, 6, 75–79.

    Google Scholar 

  • Straumanis, J.J., Shagass, C., & Overton, D.A. (1973b). Somatosensory evoked responses in Down syndrome. Archives of General Psychiatry, 29, 544–549.

    Google Scholar 

  • Straumanis, J.J., Shagass, C., & Schwartz, M. (1965). Visually evoked cerebral response changes associated with chronic brain syndromes and aging. Journal of Gerontology, 20, 498–506.

    Google Scholar 

  • Strenge, H., & Hedderich, J. (1982). Age-dependent changes in central somatosensory conduction time. European Neurology, 21, 270–276.

    Google Scholar 

  • Strommen, E.A. (1973). Verbal self-regulation in a children’s game: Impulsive errors on “Simon says.” Child Development, 44, 849–853.

    Google Scholar 

  • Syndulko, K., Hansch, E.C., Cohen, S.N., Pearce, J.W., Goldberg, Z., Montan, B., Tourtellotte, W.W., & Potvin, A.R. (1982). Long-latency event-related potentials in normal aging and dementia. In J. Courjon, F. Mauguiere, & M. Revol (Eds.), Clinical applications of evoked potentials in neurology (pp. 279–285). New York: Raven Press.

    Google Scholar 

  • Taylor, A.E., Saint Cyr, J.A., & Lang, A.E. (1986). Frontal lobe dysfunction in Parkinson’s disease. The cortical focus of neostriatal outflow. Brain, 109, 845–883.

    Google Scholar 

  • Terry, R., & Katzman, R. (1983). Senile dementia of the Alzheimer type: Defining a disease. In R. Katzman & R.D. Terry (Eds.), The neurology of aging (pp. 51–84). Philadelphia: F.A. Davis.

    Google Scholar 

  • Thompson, R.F. (1985). The brain. New York: Freeman.

    Google Scholar 

  • Turner, O.A. (1950). Some data concerning the growth and development of the cerebral cortex in man. II. Postnatal growth changes in the cortical surface area. Archives of Neurology and Psychiatry, 64, 378–384.

    Google Scholar 

  • Visser, S.L., Stam, F.C., Van Tilburg, W., Op Den Velde, W., Blom, J.L., & De Rijke, W. (1976). Visual evoked response in senile and presenile dementia. Electroencephalography and Clinical Neurophysiology, 40, 385–392.

    Google Scholar 

  • Vogt, C., & Vogt, O. (1946). Aging of nerve cells. Nature, 158, 304.

    Google Scholar 

  • Walford, R.L. (1982). Immunological studies of Down’s syndrome and Alzheimer’s disease. In F.M. Sinex & C.R. Merril (Eds.), Alzheimer’s disease, Down’s syndrome, and aging (pp. 95–106). New York: New York Academy of Sciences.

    Google Scholar 

  • Wayner, M.J., & Emmers, R. (1958). Spinal synaptic delay in young and aged rats. American Journal of Physiology, 194, 403–405.

    Google Scholar 

  • White, S.H. (1965). Evidence for a hierarchical arrangement of learning processes. In L.P. Lipsitt & C.C. Spiker (Eds.), Advances in child development and behavior, (pp. 187–220). New York: Academic Press.

    Google Scholar 

  • Woodruff, D.S. (1985). Arousal, sleep, and aging. In J.E. Birren & K.W. Share (Eds.), Handbook of the psychology of aging (2nd ed.; pp. 261–294). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Woodruff-Pak, D.S., Lavond, D.G., Logan, CG., & Thompson, R.F. (1987). Classical conditioning in 3-, 30-, and 45-month old rabbits: Behavioral learning and hippocampal unit activity. Neurobiology of Aging, 8, 101–108.

    Google Scholar 

  • Woodruff-Pak, D.S., & Thompson, R.F. (in press). Classical conditioning of the eyeblink response in the delay paradigm in adults aged 18–83 years. Psychology and Aging.

    Google Scholar 

  • Woods, D.L., & Clayworth, C.C. (1986). Age-related changes in human middle latency auditory evoked potentials. Electroencephalography and Clinical Neurophysiology, 65, 297–303.

    Google Scholar 

  • Wright, C.E., & Furlong, P.L. (1988). Visual evoked potentials in elderly patients with primary or multi-infarct dementia. British Journal of Psychiatry, 152, 679–682.

    Google Scholar 

  • Yagi, A., Bali, L., & Callaway, E. (1976). Optimum parameters for the measurement of cortical coupling. Physiological Psychology, 4, 33–38.

    Google Scholar 

  • Yahr, M.D. (1984). Parkinsonism. In L.P. Rowland (Ed.), Merritt’s textbook of neurology (pp. 526–534). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Yakovlev, P.L, & Lecours, A.R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Philadelphia: F.A. Davis.

    Google Scholar 

  • Yellin, A.M., Lodwig, A.K., & Jerison, H.J. (1979). Effects of rate of repetitive stimulus presentation on the visual evoked brain potentials of young adults with Down’s syndrome. Biological Psychiatry, 14, 913–924.

    Google Scholar 

  • Yellin, A.M., Lodwig, A.K., & Jerison, H.J. (1980). Auditory evoked brain potentials as a function of interstimulus interval in adults with Down’s syndrome. Audiology, 19, 255–262.

    Google Scholar 

  • Zemon, V., Kaplan, E., & Ratliff, F. (1986). The role of GABA-mediated intracortical inhibition in the generation of visual evoked potentials. In R.Q. Cracco & I. Bodis-Wollner (Eds.), Evoked potentials (pp. 287–295). New York: Alan R. Liss.

    Google Scholar 

  • Zuckerman, M., Murtaugh, T., & Siegel, J. (1974). Sensation seeking and cortical augmenting-reducing. Psychophysiology, 11, 535–542.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Dustman, R.E., Emmerson, R.Y., Shearer, D.E. (1990). Electrophysiology and Aging: Slowing, Inhibition, and Aerobic Fitness. In: Howe, M.L., Stones, M.J., Brainerd, C.J. (eds) Cognitive and Behavioral Performance Factors in Atypical Aging. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8947-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8947-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8949-1

  • Online ISBN: 978-1-4613-8947-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics