Skip to main content

Computer Simulation Studies of the Electrical Double Layer

  • Chapter
Micellar Solutions and Microemulsions

Abstract

Computer simulation techniques have been used to study the electric double layer with respect to both equilibrium and transport properties. Comparisons have been made between simulated results and results obtained from the Poisson-Boltzmann (PB) equation. The mean-field approximation underlying the PB equation turns out to be qualitatively correct for weakly coupled systems, but becomes less accurate for strongly coupled systems. For a system with high surface charge density and divalent counterions, the PB equation predicts a repulsive interaction between overlapping double layers, while the Monte Carlo simulations show a net attraction due to the strong ion-ion correlation. The inclusion of dielectric discontinuities into the basic primitive model does not seem to alter these conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.J.W. Verwey and J.Th.G. Overbeek, “Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.

    Google Scholar 

  2. S.L. Carnie and D.Y.C. Chan, J. Chem. Phys. 73, 2949 (1980).

    Article  CAS  Google Scholar 

  3. T. Tadros, ed., “Surfactants, Academic Press, London 1984.

    Google Scholar 

  4. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21, 1083 (1953).

    Article  Google Scholar 

  5. G.M. Torrie and J.P. Valleau, Chem. Phys. Lett. 65, 343 (1979).

    Article  CAS  Google Scholar 

  6. W. Megen and I.J. Snook, J. Chem. Phys. 73, 4656 (1980).

    Article  Google Scholar 

  7. D. Bratko and V. Vlachy, Chem. Phys. Lett. 90, 434 (1982).

    Article  CAS  Google Scholar 

  8. C.S. Murthy, R.J. Bacquet, and P.J. Rossky, J. Phys. Chem. 89, 701 (1985).

    Article  CAS  Google Scholar 

  9. P. Linse, G. Gunnarsson, and B. Jönsson, J. Phys. Chem. 86, 413 (1982); P. Linse and B. Jönsson, J. Chem. Phys. 78, 3167 (1983).

    CAS  Google Scholar 

  10. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Google Scholar 

  11. T. Akesson and B. Jönsson, Mol. Phys. 54, 369 (1985).

    Article  Google Scholar 

  12. D. Henderson and L. Blum, J. Chem. Phys. 69, 5441 (1978).

    Article  CAS  Google Scholar 

  13. H. Wennerström, B. Jönsson, and P. Linse, J. Chem. Phys. 76, 4665 (1982).

    Article  Google Scholar 

  14. B. Jönsson and H. Wennerström, J.C.S. Faraday Trans. 2 79, 19 (1983).

    Google Scholar 

  15. B. Jönsson, H. Wennerström, and B. Halle, J. Phys. Chem. 84, 2179 (1980).

    Article  Google Scholar 

  16. A.L. Nichols and L.R. Pratt, J. Chem. Phys. 77, 1070 (1982).

    Article  CAS  Google Scholar 

  17. S.L. Carnie and D.Y.C. Chan, Mol. Phys. 51, 1047 (1984).

    Article  CAS  Google Scholar 

  18. R.A. Marcus, J. Chem. Phys. 23, 1057 (1955).

    Article  Google Scholar 

  19. L. Guldbrand, B. Jönsson, H. Wennerström, and P. Linse, J. Chem. Phys. 80, 2221 (1984).

    Article  CAS  Google Scholar 

  20. V. Vlachy and D. Bratko, J. Chem. Phys. 75, 4612 (1981).

    Article  CAS  Google Scholar 

  21. B. Svensson and B. Jönsson, Chem. Phys. Lett. 108, 580 (1984).

    Article  CAS  Google Scholar 

  22. S. Lifson and J.L. Jackson, J. Chem. Phys. 36, 2410 (1962).

    Article  CAS  Google Scholar 

  23. D.L. Ermak, J. Chem. Phys. 62, 4189, 4197 (1975).

    Google Scholar 

  24. T. Akesson and B. Jönsson, J. Phys. Chem. 89, 2401 (1985).

    Article  Google Scholar 

  25. T. Akesson, B. Jönsson, B. Halle and D.Y.C. Chan, Mol. Phys. 57, 1105 (1986).

    Google Scholar 

  26. R. Kjellander and S. Marcelja, Chem. Phys. Lett. 112, 49 (1984).

    Article  CAS  Google Scholar 

  27. R. Kjellander and S. Marcelja, J. Chem. Phys. 82, 2122 (1985).

    Article  CAS  Google Scholar 

  28. A. Khan, K. Fontell, G. Lindblom, and B. Lindman, J. Phys. Chem. 86, 4266 (1982).

    Article  CAS  Google Scholar 

  29. A. Khan, B. Jönsson, and H. Wennerström, J. Phys. Chem. 89, 5180 (1985).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Jönsson, B., Wennerström, H. (1990). Computer Simulation Studies of the Electrical Double Layer. In: Chen, SH., Rajagopalan, R. (eds) Micellar Solutions and Microemulsions. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8938-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8938-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8940-8

  • Online ISBN: 978-1-4613-8938-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics