Turing-Machines and the Entscheidungsproblem

  • J. Richard Büchi

Abstract

Let Q be the set of all sentences of elementary quantification theory (without equality). In its semantic version Hilbert’s Entscheidungsproblem for a class XQ of sentences is, [X]: To find a method which for every S X yields a decision as to whether or not S is satisfiable.

Keywords

Prefix Pase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Ackermann, W.: Solvable cases of the decision problem. North-Holland, Amsterdam 1954.MATHGoogle Scholar
  2. [2]
    Bernays, P.: Remarques sur les problème de la décision en logique élémentaire. Edition de centre nat. de la rech, scient. 13, 39–44 (1938), Paris.Google Scholar
  3. [3]
    Church, A.: A note on the Entscheidungsproblem. J. Symbolic Logic 1, 40–41, (1936).MATHCrossRefGoogle Scholar
  4. [3a]
    Church, A.: A note on the Entscheidungsproblem. J. Symbolic Logic 1, 101–102 (1936).MATHCrossRefGoogle Scholar
  5. [4]
    Suranyi, J.: Reduktionstheorie des Entscheidungsproblems. Budapest 1959.MATHGoogle Scholar
  6. [5]
    Trachténbrot, B. A.: Névozmožnost’ algorifma dlá problemy razréšsimosti na konécnyh klassah. Doklady Akadémii Nauk SSSR, n. s., 70, 569–572 (1950).MATHGoogle Scholar
  7. [6]
    Turing, A. M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. ser. 2, 42, 230–265 (1936–7);Google Scholar
  8. [6a]
    Turing, A. M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. ser. 2 43, 544–546 (1937).Google Scholar
  9. [7]
    Wang, H.: Proving theorems by pattern recognition II. Bell System Technical J. 40, 1–41 (1961).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • J. Richard Büchi
    • 1
    • 2
  1. 1.Ann ArborUSA
  2. 2.MainzGermany

Personalised recommendations