Skip to main content

Abstract

This paper initiates an investigation which seeks to explain elementary definability as the classical results of mathematical logic (the completeness, compactness and Löwenheim-Skolem theorems) explain elementary logical consequence. The theorems of Beth and Svenonius are basic in this approach and introduce automorphism groups as a means of studying these problems. It is shown that for a complete theory T, the definability relation of Beth (or Svenonius) yields an upper semi-lattice whose elements (concepts) are interdefinable formulas of T (formulas having equal automorphism groups in all models of T). It is shown that there are countable models A of T such that two formulae are distinct (not interdefinable) in T if and only if they are distinct (have different automorphism groups) in A. The notion of a concept h being normal in a theory T is introduced. Here the upper semi-lattice of all concepts which define h is proved to be a finite lattice — anti-isomorphic to the lattice of subgroups of the corresponding automorphism group. Connections with the Galois theory of fields are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. W. Beth, On Padoa’s method in the theory of definitions, Indag. Math. 15 (1953).

    Google Scholar 

  2. J. R. Buchi, Relatively Categorical and Normal Theories, in The Theory of Models, Amsterdam, 1965.

    Google Scholar 

  3. J. R. Buchi and K. J. Danhof, Model Theoretic Approaches to Definability, Z. Math. Logik Grundlagen Math. 18 (1972), 61–70.

    Article  MathSciNet  Google Scholar 

  4. J. R. Buchi and J. B. Wright, The theory of proportionality as an abstraction of group theory, Math. Ann. 130 (1955).

    Google Scholar 

  5. J.R. Buchi and J.B. Wright, Invariants of the anti-automorphisms of a group, Proc. Amer. Math. Soc. 8 (1957).

    Google Scholar 

  6. W. Craig, Linear reasoning. A new form of the Herbrand-Gentzen theorem, J. Symbolic Logic 22 (1957).

    Google Scholar 

  7. W. Craig, Tree uses of the Herband-Gentzen theorem in relating model theorey and proof theory, J. Symbolic Logic 22 (1957).

    Google Scholar 

  8. K.J. Danhof, Concepts in normal theories, Notices Amer. Math. Soc. 71 T-E26 (1971).

    Google Scholar 

  9. D. Hilbert and P. Bernays, Grundlagen der Mathematik, Vol. 1, Berlin, 1934.

    Google Scholar 

  10. F. Klein, Vergleichende Betrachutngen über neuere geometrische Forschungen, Verlag A. Deicher, Erlangen, 1872.

    Google Scholar 

  11. A. Robinson, A result on consistency and its application to the theory of definition, Indag. Math. 18 (1956), 47–58.

    Google Scholar 

  12. L. Svenonius, A theorem on permutations in models, Theoria (Lund) 25 (1959).

    Google Scholar 

  13. A. Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Philosophica 1, (1936).

    Google Scholar 

  14. A. Tarski, Einige Methodologische Untersuchungen über die Definierbarkeit der Begriffe Erkenntnis 5 (1935).

    Google Scholar 

  15. J.B. Wright, Quasi-projective geometry of two dimensions, Michigan Math. J. 2 (1953–4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Buchi, J.R., Danhof, K.J. (1990). Definibility in Normal Theories. In: Mac Lane, S., Siefkes, D. (eds) The Collected Works of J. Richard Büchi. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8928-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8928-6_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8930-9

  • Online ISBN: 978-1-4613-8928-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics