Skip to main content

Fourier Transform Method for Statistical Evaluation of Corneal Endothelial Morphology

  • Chapter

Abstract

The human cornea is about 0.52 mm thick at its center. It is composed of several layers, the innermost being the endothelium, which is a single layer of cells in contact with the aqueous humor. The endothelium consists of some 350,000 to 500,000 polygonal cells, approximately 5 mm thick, with straight-sided borders about 20 μm across. In a newborn baby the cells are almost all hexagonal and close-packed1; the cell density is approximately 4500 cells/sq mm. By the ninth decade of life the cell density can decrease to fewer than 1000 cells/sq mm, and the hexagons are less regular and mixed in with pentagons, heptagons, and other polygonal shapes.2–4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Speedwell L, Novakovic P, Sherrard ES, Taylor DSL The infant corneal endothelium. Arch Ophthalmol 1988;106:771–775.

    PubMed  CAS  Google Scholar 

  2. Waring GO III, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium, normal and pathological structure and function. Ophthalmology 1982;89:531–590.

    PubMed  Google Scholar 

  3. Yee RW, Matsuda M, Edelhauser HF. Wide-field endothelial counting panels. Am J Ophthalmol 1985;99:596–597.

    PubMed  CAS  Google Scholar 

  4. Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res 1985;4:671–678.

    Article  PubMed  CAS  Google Scholar 

  5. Bourne WM, Kaufman HE. Specular microscopy of human corneal endothelium in vivo. Am J Ophthalmol 1976;81:319–323.

    PubMed  CAS  Google Scholar 

  6. Leibowitz HM, Laing RA. Specular microscopy in corneal disorders. In Leibowitz HM (ed): Corneal Disorders: Clinical Diagnosis and Management. Saunders, Philadelphia, 1984 pp. 123–163.

    Google Scholar 

  7. Mayer DJ. Clinical Wide-Field Specular Microscopy. Baillière Tindall, London, 1984.

    Google Scholar 

  8. Landshman N, Ben-Hanan I, Assia E, et al. Relationship between morphology and functional ability of regenerated corneal endothelium. Invest Ophthalmol Vis Sci 1988;29:1100–1109.

    PubMed  CAS  Google Scholar 

  9. Masters BR. Two-dimensional fluorescent redox imaging of rabbit corneal endothelium. Invest ophthalmol Vis Sci 1988;29(suppl): 285.

    Google Scholar 

  10. Collin HB, Grabsch BE. The effect of ophthalmic preservatives on the shape of corneal endothelial cells. Acta Ophthalmol (Copenh) 1982;60:93–105.

    Article  CAS  Google Scholar 

  11. Fabian E, Mertz M, Koditz W. Endothelmor-phometrie durch automatisierte Fernsehbildanalyse. Klin Monatsbt Augenheikd 1983; 182:218–223.

    Article  CAS  Google Scholar 

  12. Ford GE, Waring, GO. Computer analysis of the corneal endothelial cells. Invest Ophthalmol Vis Sci. 1981;20(suppl):231.

    Google Scholar 

  13. Hartmann C, Koditz W. Automated morphometry endothelial analysis combined with video specular microscopy. Cornea 1984/5; 3:155–167.

    Article  PubMed  Google Scholar 

  14. Hirst LW, Sterner RE, Grant DG. Automated analysis of wide-field specular photomicrographs. Cornea 1984;3:83–87.

    Article  PubMed  CAS  Google Scholar 

  15. Lester JM, MacFarland JL, Laing RA, et al. Automated morphometric analysis of corneal endothelial cells. Invest Ophthalmol Vis Sci 1981;20:407–410.

    PubMed  CAS  Google Scholar 

  16. Serra J. Image Analysis and Mathematical Morphology. Academic Press, New York; 1982.

    Google Scholar 

  17. Masters BR. Characterization of corneal specular endothelial photomicrographs by their Fourier transforms. Proc SPIE 1988;938:246–252.

    Google Scholar 

  18. Bracewell RN. The Fourier Transform and its Applications. 2nd Ed. McGraw-Hill, New York, 1986.

    Google Scholar 

  19. Goodman JW. Introduction to Fourier Optics. McGraw-Hill, New York, 1968.

    Google Scholar 

  20. Stark H. Theory and measurement of the optical Fourier transform. In Stark H (ed): Applications of Optical Fourier Transforms. Academic Press, New York, 1982, pp. 2–40.

    Google Scholar 

  21. Casasent D, Richards J. Optical Hough and Fourier processors for product inspection. Opt Eng 1988;27:258–265.

    Google Scholar 

  22. Harburn G, Taylor CA, Welberry TR. Atlas of Optical Transforms. Cornell University Press, Ithaca, NY, 1975.

    Google Scholar 

  23. Horner JL (ed): Optical Signal Processing. Academic Press, New York, 1987.

    Google Scholar 

  24. Kasdan HL. Industrial application of diffraction pattern sampling. Opt Eng 1979;18:496–503.

    Google Scholar 

  25. Stark H, Lee D. An optical digital approach to the pattern recognition of coal-worker’s pneumoconiosis. IEEE Trans Syst Man Cybern 1976;SMC-6:788–793.

    Google Scholar 

  26. Almeida SP, Wygant RW, Jearld A Jr, Penttila JA. Optical Fourier transform characterization of fish scale age. Appl. Optics 1987;26:2299–2305.

    Article  CAS  Google Scholar 

  27. Lipson H. Optical Transforms. Academic Press, London, 1972.

    Google Scholar 

  28. Hereford JM, Rhodes WT. Nonlinear optical image filtering by time-sequential threshold decomposition. Opt Eng 1988;27:274–279.

    Google Scholar 

  29. Hirst LW, Yamauchi K, Enger C, Vogelpohl W, Whittington V. Quantitative analysis of wide-field specular microscopy. Invest. Ophth. Vis Sci 1989;30:1972–1979.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Masters, B.R., Lee, YK., Rhodes, W.T. (1990). Fourier Transform Method for Statistical Evaluation of Corneal Endothelial Morphology. In: Masters, B.R. (eds) Noninvasive Diagnostic Techniques in Ophthalmology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8896-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8896-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8898-2

  • Online ISBN: 978-1-4613-8896-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics