Fundus Reflectometry

  • Paul E. Kilbride
  • Harris Ripps


The term fundus reflectometry is associated generally with noninvasive measurements of visual pigments in the living eye. Despite the fact that there are biologic factors that add greatly to the complexity of quantifying (and interpreting) reflectometric data (see below), the technique affords the unique opportunity to study events involved in the first stage of the visual process.1–5 Accordingly, the greater part of this chapter is devoted to a description of the techniques by which photochemical data are collected and analyzed and to the application of fundus reflectometry to clinical problems. However, similar methods have now been used to study the distribution and absorption characteristics of other ocular pigments, and an example of this type of measurement is given in the final section of the chapter.


Retinitis Pigmentosa Outer Segment Visual Pigment Human Retina Macular Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weale RA. Vision and fundus reflectometry: a review. Photochem Photobiol 1965;4:67–87.PubMedGoogle Scholar
  2. 2.
    Weale RA. Photochemistry and vision. In Giese AC (ed): Photophysiology. Vol. 4. Academic Press, New York, 1968, pp. 1–45.Google Scholar
  3. 3.
    Ripps H, Weale RA. The photophysiology of vertebrate color vision. In Giese AC (ed): Photophysiology. Vol. 5. Academic Press, New York, 1970, pp. 127–168.Google Scholar
  4. 4.
    Rushton WAH. Color vision: an approach through the cone pigments. Invest Ophthalmol 1971;10:311–322.PubMedGoogle Scholar
  5. 5.
    Rushton WAH. Visual pigments in man. In Dartnall HJA (ed): Handbook of Sensory Physiology. Vol. 7/1. Springer-Verlag, New York, 1972, pp. 365–392.Google Scholar
  6. 6.
    Boll F. Zur Anatomie und Physiologie der Retina. Monatsbl Preuss Akad Wiss Berl 1876; 41:783–787.Google Scholar
  7. 7.
    Kuhne W. Zur Photochemie der Netzhaut. Unters Physiol Inst Univ Heidelberg 1878; 1:1–14.Google Scholar
  8. 8.
    Von Helmholtz H. Handbuch der Physiologischen Optik. Vol. 1. L. Voss: Hamburg, 1909, pp. 226–260.Google Scholar
  9. 9.
    Abelsdorff G. Die ophthalmoskopische Erkennbarkeit des Sehpurpurs. Z Psychol Physiol Sinnesorgane 1897;14:77–90.Google Scholar
  10. 10.
    Abelsdorff G. Physiologische Beobachtungen am Auge der Krokodile. Arch Anat Physiol (Physiol Abt) 1898;155–166.Google Scholar
  11. 11.
    Hosoya Y. Uber den Sehpurpur in tapezierten Auge. Tohoku J Exp Med 1929;12:146–152.Google Scholar
  12. 12.
    Brindley GS, Willmer EN. The reflection of light from the macular and peripheral fundus oculi in man. J Physiol (Lond) 1952;116:350–356.Google Scholar
  13. 13.
    Weale RA. Photochemical reactions in the living cat’s retina. J Physiol (Lond) 1953; 121:322–331.Google Scholar
  14. 14.
    Weale RA. Bleaching experiments on eyes of living guinea pigs. J Physiol (Lond) 1955; 127:572–586.Google Scholar
  15. 15.
    Weale RA. Bleaching experiments on eyes of living grey squirrles (Sciurus carolensis leucotis). J Physiol (Lond) 1955;127:587–591.Google Scholar
  16. 16.
    Rushton WAH, Campbell FW. The measurement of rhodopsin in the living human eye. Nature 1954;174:1096–1097.PubMedGoogle Scholar
  17. 17.
    Rushton WAH, Campbell FW, Hagins WA, Brindley GS. The bleaching and regeneration of rhodopsin in the living eye of the albino rabbit and of man. Opt Acta 1955;1:183–190.Google Scholar
  18. 18.
    Weale RA. Photosensitive reactions in foveae of normal and cone-monochromatic observers. Opt Acta 1959;6:158–174.Google Scholar
  19. 19.
    Rushton WAH. Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J Physiol (Lond) 1961;156:193–205.Google Scholar
  20. 20.
    Matthews RG, Hubbard R, Brown PK, Wald G. Tautomeric forms of metarhodopsin. J Gen Physiol 1963;47:215–240.PubMedGoogle Scholar
  21. 21.
    Ostroy SE, Erhardt F, Abrahamson EW. Protein configuration changes in the photolysis of rhodopsin. II. The sequence of intermediates in thermal decay of cattle metarhodopsin in vitro. Biochim Biophys Acta 1966;112:265–277.PubMedGoogle Scholar
  22. 22.
    Yoshizawa T. In Dartnall HJA (ed): Handbook of Sensory Physiology. Vol. 7/1. Springer-Verlag, New York, 1972 pp. 146–179.Google Scholar
  23. 23.
    Kilbride PE, Read JS, Fishman GA, Fishman M. Determination of human cone pigment density difference spectra in spatially resolved regions of the fovea. Vis Res 1983;23:1341–1350.PubMedGoogle Scholar
  24. 24.
    Alpern M. Rhodopsin kinetics in the human eye. J Physiol (Lond) 1971;217:447–471.Google Scholar
  25. 25.
    Smith VC, Pokorny J, van Norren D. Densitometric measurement of human cone photopigment kinetics. Vis Res 1983;23:517–524.PubMedGoogle Scholar
  26. 26.
    Alpern M, Maaseidvaag F, Ohba N. The kinetics of cone visual pigments in man. Vis Res 1971;11:539–549.PubMedGoogle Scholar
  27. 27.
    Brin KP, Ripps H. Rhodopsin photoproducts and rod sensitivity in the skate retina. J Gen Physiol 1977;69:97–120.PubMedGoogle Scholar
  28. 28.
    Ebrey TG. The thermal decay of the intermediates of rhodopsin in situ. Vis Res 1968; 8:965–982.PubMedGoogle Scholar
  29. 29.
    Dowling JE, Ripps H. Visual Adaptation in the retina of the skate. J Gen Physiol 1970; 56:491–520.PubMedGoogle Scholar
  30. 30.
    Ripps H, Mehaffey L III, Siegel IM, Ernst W, Kemp CM. Flash photolysis of rhodopsin in the cat retina. J Gen Physiol 1981;77:293–315.Google Scholar
  31. 31.
    Weale RA. On an early stage of rhodopsin regeneration in man. Vis Res 1967;7:819–827.PubMedGoogle Scholar
  32. 32.
    Ripps H, Weale RA. Rhodopsin regeneration in man. Nature 1969;222:775–777.PubMedGoogle Scholar
  33. 33.
    Dartnall HJA. The Visual Pigments. Methuen, London, 1957.Google Scholar
  34. 34.
    Ripps H, Weale RA. Analysis of foveal densitometry. Nature 1965;205:52–56.PubMedGoogle Scholar
  35. 35.
    Ripps H, Snapper AG. Computer analysis of photochemical changes in the human retina. Comput Biol Med 1974;4:107–122.PubMedGoogle Scholar
  36. 36.
    Van Norren D, Tiemeijer LF. Spectral reflectance of the human eye. Vis Res 1986;26:313–320.PubMedGoogle Scholar
  37. 37.
    Weale RA. Photo-chemical changes in the dark-adapting human retina. Vis Res 1962; 2:25–33.Google Scholar
  38. 38.
    Rushton WAH, Powell D. Rhodopsin content and visual threshold of human rods. Vis Res 1972;12:1073–1081.PubMedGoogle Scholar
  39. 39.
    Ripps H, Mehaffey III L, Siegel IM. Rhodopsin kinetics in the cat retina. J Gen Physiol 1981;77:317–334.PubMedGoogle Scholar
  40. 40.
    Bridges CDB. Studies on the flash photolysis of visual pigments. 2. Production of thermally stable photosensitive pigments in flash-irradiated solutions of frog rhodopsin. Biochem J 1961;79:135–143.PubMedGoogle Scholar
  41. 41.
    Ernst W, Kemp CM. Reversal of photoreceptor bleaching and adaptation by microsecond flashes. Vis Res 1979;19:363–365.PubMedGoogle Scholar
  42. 42.
    Ripps H, Weale RA. Flash bleaching of rhodopsin in the human retina. J Physiol (Lond) 1969;200:151–159.Google Scholar
  43. 43.
    Mizuno K, Majima A, Ozawa K, Ito H. Fundus photography in red-free light (rhodopsin photography). Vis Res 1968;8:481–482.PubMedGoogle Scholar
  44. 44.
    Highman VN, Weale RA. Rhodopsin density and visual threshold in retinitis pigmentosa. Am J Ophthalmol 1973;75:822–832.PubMedGoogle Scholar
  45. 45.
    Sheorey UB. Clinical assessment of rhodopsin in the eye. Bri J Ophthalmol 1976;60:135–141.Google Scholar
  46. 46.
    Tanino T, Ohba N. Photographic retinal densitometry in the living human eye. Jpn J Ophthalmol 1977;21:227–241.Google Scholar
  47. 47.
    Fram I, Read JS, McCormick BH, Fishman GA. In vivo study of the photolabile visual pigment utilizing the television ophthalmoscope image processor. In Greenfield RH, Colen-brander A (eds): Computers in Ophthalmology. IEEE Computer Society, St. Lousi, 1979, pp. 133–144.Google Scholar
  48. 48.
    Kemp CM, Faulkner DJ. Rhodopsin measurement in human disease: fundus reflectometry using television. Dev Ophthalmol 1981;2: 130–134.PubMedGoogle Scholar
  49. 49.
    Faulkner DJ, Kemp CM. Human rhodopsin measurement using a TV-based imaging fundus reflectometry. Vis Res 1984;24:221–231.PubMedGoogle Scholar
  50. 50.
    Osterberg G. The topography of the layer of rods and cones in the human retina. Acta Ophthalmol [Suppl 6] (Copenh) 1935;13:1–102.Google Scholar
  51. 51.
    Ripps H, Brin KP, Weale RA. Rhodopsin and visual threshold in retinitis pigmentosa. Invest Ophthalmol Vis Sci 1978;17:735–745.PubMedGoogle Scholar
  52. 52.
    Bowmaker JK, Dartnall HJA. Visual pigments of rods and cones in a human retina. J Physiol (Lond) 1980;298:501–511.Google Scholar
  53. 53.
    Rushton WAH, Baker HD. Effect of a very bright flash on cone vision and cone pigment kinetics in man. Nature 1963;200:421–423.PubMedGoogle Scholar
  54. 54.
    Pugh EN Jr. Rushton’s paradox: rod dark adaptation after flash photolysis. J Physiol (Lond) 1975;248:413–431.Google Scholar
  55. 55.
    Margolis S, Siegel IM, Ripps H. Variable expressivity in fundus albipunctatus. Ophthalmology 1987;94:1416–1422.PubMedGoogle Scholar
  56. 56.
    Van Norren D, van der Kraats J. A continuously recording retinal densitometer. Vis Res 1981;21:897–905.PubMedGoogle Scholar
  57. 57.
    Ripps H, Pepperberg DR. Photoreceptor processes in visual adaptation. Neurosci Res 1987; (suppl. 6): 87–106.Google Scholar
  58. 58.
    Rushton WAH. Dark-adaptation and the regeneration of rhodopsin. J Physiol (Lond) 1961;156:166–178.Google Scholar
  59. 59.
    Weale RA. Further studies of photo-chemical reactions in living human eyes. Vis Res 1962; 1:354–378.Google Scholar
  60. 60.
    Rushton WAH, Henry GH. Bleaching and regeneration of cone pigments in man. Vis Res 1968;8:617–631.PubMedGoogle Scholar
  61. 61.
    Ripps H, Weale RA. Directional properties of cone pigments. J Opt Soc Am 1965;55:205–206.Google Scholar
  62. 62.
    Ripps H, Weale RA. Photo-labile changes and the directional sensitivity of the human fovea. J Physiol (Lond) 1964;173:57–64.Google Scholar
  63. 63.
    Coble JR, Rushton WAH. Stiles-Crawford effect and the bleaching of cone pigments. J Physiol (Lond) 1971;217:231–242.Google Scholar
  64. 64.
    Alpern M, Pugh EN Jr. The density and photosensitivity of human rhodopsin in the living retina. J Physiol (Lond) 1974;237:341–370.Google Scholar
  65. 65.
    Ripps H, Weale RA. Cone pigments in the normal human fovea. Vis Res 1963;3:531–543.Google Scholar
  66. 66.
    Rushton WAH. The difference spectrum and photosensitivity of rhodopsin in the living human eye. J Physiol (Lond) 1956;134:11–29.Google Scholar
  67. 67.
    Baker HD, Coile DC. Retinal densitometry with the natural pupil. Invest Ophthal Vis Sci 1987;28 (suppl):219.Google Scholar
  68. 68.
    Rushton WAH. The rhodopsin density in human rods. J Physiol (Lond) 1956;134:30–46.Google Scholar
  69. 69.
    Rushton WAH. Stray light and the measurement of mixed pigments in the retina. J Physiol (Lond) 1965;176:46–55.Google Scholar
  70. 70.
    Liebman PA. Microspectrometry of photoreceptors. In Dartnall HJA (ed): Handbook of Sensory Physiology. Vol. VII/1. Photochemistry of Vision. Springer-Verlag, New York, 1972; pp. 481–528.Google Scholar
  71. 71.
    Harosi FI. Absorption spectra and linear dichroism of some amphibian photoreceptors. J Gen Physiol 1975;66:357–382.PubMedGoogle Scholar
  72. 72.
    Curcio CA, Sloan KR Jr, Packer O, Hendrickson AE, Kalina RE. Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 1987; 36:579–582.Google Scholar
  73. 73.
    King-Smith PE. The optical density of erythrolabe determined by retinal densitometry using the self-screening method. J Physiol (Lond) 1973;230:535–549.Google Scholar
  74. 74.
    Enoch JM. Optical properties of the retinal receptors. J Opt Soc Am 1963;53:71–85.Google Scholar
  75. 75.
    Winston R, Enoch JM. Retinal cone receptor as an ideal light collector. J Opt Soc Am 1971; 61:1120–1121.PubMedGoogle Scholar
  76. 76.
    Faulkner DJ. Visual pigment measurement using a television-based imaging fundus reflectometer. PhD thesis, University of London, 1984.Google Scholar
  77. 77.
    Rushton WAH. Visual pigments in the colour blind. Nature 1958;182:690–692.PubMedGoogle Scholar
  78. 78.
    Rushton WAH. A cone pigment in the protanope. J Physiol (Lond) 1963;168:345–359.Google Scholar
  79. 79.
    Rushton WAH. Foveal pigment in the deuteranope. J Physiol (Lond) 1965;176:24–37.Google Scholar
  80. 80.
    Ripps H, Siegel IM, Mehaffey III L. The cellular basis of visual dysfunction. In Sheffield JB, Hilfer SR (eds): Hereditary Retinal Disorders, Cell and Developmental Biology of the Eye: Heredity and Visual Development. Springer-Verlag, New York, 1985, pp. 171–204.Google Scholar
  81. 81.
    Szamier RB, Berson EL, Klein R, Meyers S. Sex-linked retinitis pigmentosa: Ultrastructure of photoreceptors and pigment epithelium. Invest Ophthalmol Vis Sci 1979;18:145–160.PubMedGoogle Scholar
  82. 82.
    Van Meel GJ, van Norren D. Foveal densitometry in retinitis pigmentosa. Invest Ophthalmol Vis Sci 1983;24:1123–1130.PubMedGoogle Scholar
  83. 83.
    Kilbride PE, Fishman M, Fishman GA, Hutman LP. Foveal cone pigment density difference and reflectance in retinitis pigmentosa. Arch Ophthalmol 1986;104:220–224.PubMedGoogle Scholar
  84. 84.
    Dowling JE. The chemistry of visual adaptation in the rat. Nature 1960;188:114–118.PubMedGoogle Scholar
  85. 85.
    Witkovsky P, Gallin E, Hollyfield JG, Ripps H, Bridges CDB. Photoreceptor thresholds and visual pigment levels in normal and vitamin A-deprived Xenopus tadpoles. J Neurophysiol 1976;39:1272–1287.PubMedGoogle Scholar
  86. 86.
    Perlman I, Auerbach E. The relationship between visual sensitivity and rhodopsin density in retinitis pigmentosa. Invest Ophthalmol Vis Sci 1981;20:758–765.PubMedGoogle Scholar
  87. 87.
    Kemp CM, Faulkner DJ, Jacobson SG. Rhodopsin levels in autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 1984; 25(suppl):197.Google Scholar
  88. 88.
    Ripps H. Night blindness revisited: from man to molecules, Proctor lecture. Invest Ophthalmol Vis Sci 1982;23:588–609.PubMedGoogle Scholar
  89. 89.
    Szamier RB, Berson EL. Retinal ultrastructure in advanced retinitis pigmentosa. Invest Ophthalmol Vis Sci 1977;16:947–962.PubMedGoogle Scholar
  90. 90.
    Aguirre GD, Allegood J, O’Brien P, Buyukmichi N. Pathogenesis of progressive rod-cone degeneration in miniature poodles. Invest Ophthalmol Vis Sci 1982;23:610–630.PubMedGoogle Scholar
  91. 91.
    Carr RE, Ripps H, Siegel IM. Visual pigment kinetics and adaptation in fundus albipunctatus. Doc Ophthalmol Proc Ser 1974;4:193–204.Google Scholar
  92. 92.
    Marshall J. Ageing changes in human cones. In: XXIII International Congress Ophthalmology, Kyoto, Japan, pp. 375–378.Google Scholar
  93. 93.
    Marshall J, Grindle J, Ansell PL, Borwein B. Convolutions in human rods: an ageing process. Br J Ophthalmol 1979;63:181–187.PubMedGoogle Scholar
  94. 94.
    Gartner S, Henkind P. Aging and degeneration of the human macula. I. outer nuclear layer and photoreceptors. Br J Opthalmol 1981;65:23–28.Google Scholar
  95. 95.
    Kilbride PE, Hutman LP, Read JS, Fishman M. The aging human eye and cone pigment density difference in the fovea. Invest Ophthalmol Vis Sci 1984;25 (suppl): 198.Google Scholar
  96. 96.
    Van Norren D, van Meel GJ. Density of human cone photopigments as a function of age. Invest Ophthalmol Vis Sci 1985;26:1014–1016.PubMedGoogle Scholar
  97. 97.
    Kilbride PE, Hutman LP, Fishman M, Read JS. Foveal cone pigment density difference in the aging human eye. Vis Res 1986;26:321–325.PubMedGoogle Scholar
  98. 98.
    Keunen JEE, van Norren D, van Meel GJ. Density of foveal cone pigments at older age. Invest Ophthalmol Vis Sic 1987;28:985–991.Google Scholar
  99. 99.
    Baker HD, Kuyk TK. In vivo density of cone pigments after repeated complete bleaches. In Williams TP, Baker BN (eds): The Effects of Constant Light on Visual Processes. Plenum Press, New York, 1980, pp. 347–353.Google Scholar
  100. 100.
    Weale RA. The eye and aging. Interdiscipl Top Gerontol 1978;13:1–13.Google Scholar
  101. 101.
    Wald G. Human vision and the spectrum. Science 1945;101:653–658.PubMedGoogle Scholar
  102. 102.
    Bone RA, Landrum JT. Macular pigment in Henle fiber membranes: a model for Haidinger’s brushes. Vis Res 1984;24:103–108.PubMedGoogle Scholar
  103. 103.
    Snodderly DM, Auran JD, Delori FC. The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci 1984;25:674–685.PubMedGoogle Scholar
  104. 104.
    Bone RA, Landrum JT, Tarsis SL. Distribution of macular pigment in human and other retinas. Invest Ophthalmol Vis Sci 1986;27 (suppl):192.Google Scholar
  105. 105.
    Kilbride PE, Alexander KR, Fishman M, Fishman GA. Macular pigment in retinitis pigmentosa measured by digitized television fundus reflectometry. Invest Ophthalmol Vis Sci 1986; 27(suppl):310.Google Scholar
  106. 106.
    Kilbride PE, Alexander KR, Fishman M, Fishman GA. Human macular pigment assessed by imaging fundus reflectometry, Vis Res 1989; 29; 663–674.PubMedGoogle Scholar
  107. 107.
    Alexander KR, Kilbride PE, Fishman GA, Fishman M. Macular pigment and reduced foveal short-wavelength sensitivity in retinitis pigmentosa. Vis Res 1987;27:1077–1083.PubMedGoogle Scholar
  108. 108.
    Weale RA. Physics and ophthalmology. Phys Med Biol 1979;24:489–504.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Paul E. Kilbride
  • Harris Ripps

There are no affiliations available

Personalised recommendations