Fluorometry of the Anterior Segment

  • Richard F. Brubaker
  • David M. Maurice
  • Jay W. McLaren


The anterior segment includes four transparent tissues and fluids—tear film, cornea, aqueous humor, and lens—that can be directly illuminated and observed by optical systems distant from the eye. It forms a system well adapted to the measurement of fluorescence in a noninvasive manner. The principal use of fluorometry has been to measure the concentrations of fluorescent tracers in these four media and how they change with time. By treating each tissue or fluid as a separate compartment (Fig. 15.1) the concentration changes can be mathematically analyzed to provide estimates of the permeability of cellular barriers, diffusion rates in solid tissues, and the rates of flow of the tears and aqueous humor.1


Anterior Chamber Aqueous Humor Anterior Segment American National Standard Institute Aqueous Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maurice DM, Mishima S. Ocular pharmacokinetics. In Sears ML (ed): Pharmacology of the Eye. Springer-Verlag, New York, 1984, pp. 19–116.Google Scholar
  2. 2.
    Macdonald EA, Maurice DM. Loss of fluorescein across the conjunctiva. Exp Eye Res 1990 (submitted).Google Scholar
  3. 3.
    Webber WRS, Jones DP. Continuous fluorophotometric method of measuring tear turnover rate in humans and analysis factors affecting accuracy. Med Biol Eng Comput 1986;24:386–392.PubMedCrossRefGoogle Scholar
  4. 4.
    Mishima S, Gasset A, Klyce S, Baum J. Determination of tear volume and tear flow. Invest Ophthalmol 1966;5:264–276.PubMedGoogle Scholar
  5. 5.
    Furukawa RE, Poise KA. Changes in tear flow accompanying aging. Am J Optom Physiol Opt 1978;55:69–74.PubMedGoogle Scholar
  6. 6.
    Jordan A, Baum J. Basic tear flow, does it exist? Ophthalmology 1980;87:920–930.PubMedGoogle Scholar
  7. 7.
    Puffer MJ, Neault RW, Brubaker RF. Basal precorneal tear turnover in the human eye. Am J Ophthalmol 1980;89:369–376.PubMedGoogle Scholar
  8. 8.
    Mishima S, Kubota Z, Farris RL. The tear flow dynamics in normal and keratoconjunctivitis sicca cases. Excerpta Medica Int Congr Ser 1970;222:1801–1805.Google Scholar
  9. 9.
    Eliason, J, Maurice D. Sulforhodamine B staining of the ocular surface. Invest Ophthalmol Vis Sci 1988;29:193.Google Scholar
  10. 10.
    Guss R, Johnson F, Maurice D. Rhodamine B as a test molecule in intraocular dynamics. Invest Ophthalmol Vis Sci 1984;25:758–762.PubMedGoogle Scholar
  11. 11.
    Araie M, Maurice D. The rate of diffusion of fluorophores through the corneal epithelium and stroma. Exp Eye Res 1987;44:73–87.PubMedCrossRefGoogle Scholar
  12. 12.
    Adler CA, Maurice DM, Paterson ME. The effect of viscosity of the vehicle on the penetration of fluorescein into the human eye. Exp Eye Res 1971;12:34–42.CrossRefGoogle Scholar
  13. 13.
    De Kruijf EJFM, Boot JP, Laterveer L, et al. A simple method for determination of corneal epithelial permeability in humans. Curr Eye Res 1987;6:1327–1334.PubMedCrossRefGoogle Scholar
  14. 14.
    McLaren JW, Brubaker RF. A two-dimensional scanning ocular fluorophotometer. Invest Ophthalmol Vis Sci 1985;26:144–152.PubMedGoogle Scholar
  15. 15.
    Jones RF, Maurice DM. New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res 1966;5:208–220.PubMedCrossRefGoogle Scholar
  16. 16.
    Maurice DM. Where the rainbow ends: the future of anterior segment fluorometry. In Cunha-Vaz JG, Leite E (eds): Proceedings International Society of Ocular Fluorophotometry. Kugler & Ghedini, Amsterdam 1989;1–7.Google Scholar
  17. 17.
    Ota Y, Mishima S, Maurice DM. Endothelial permeability of the living cornea to fluorescein. Invest Ophthalmol 1974;13:945–949.PubMedGoogle Scholar
  18. 18.
    Sawa M, Araie M, Nagataki S. Permeability of the human endothelium to fluorescein. Jpn J Ophthalmol 1981;25:60–68.Google Scholar
  19. 19.
    Araie M, Maurice DM. A reevaluation of corneal endothelial permeability to fluorescein. Exp Eye Res 1985;41:383–390.PubMedCrossRefGoogle Scholar
  20. 20.
    Araie M, Sawa M, Nagataki S, Mishima S. Aqueous humor dynamics in man as studied by oral fluorescein. Jpn J Ophthalmol 1980; 24:346–362.Google Scholar
  21. 21.
    Seto C, Araie M, Sawa M, et al. Human corneal endothelial permeability to fluorescein and fluorescein glucuronide. Invest Ophthalmol Vis Sci 1987;28:1457–1463.PubMedGoogle Scholar
  22. 22.
    Shiraya K, Nagataki S. Movement of fluorescein monoglucuronide in the rabbit cornea. Invest Ophthalmol Vis Sci 1986;27:26–28.Google Scholar
  23. 23.
    McLaren JW, Brubaker RF: Measurement of fluorescein and fluorescein monoglucuronide in the living human eye. Invest Ophthalmol Vis Sci 1986;27:966–974.PubMedGoogle Scholar
  24. 24.
    Carlson KH, Bourne WM, Brubaker RF. Effect of long-term contact lens wear on corneal endothelial cell morphology and function. Invest Ophthalmol Vis Sci 1988;29:185–193.PubMedGoogle Scholar
  25. 25.
    Burns RR, Bourne WM, Brubaker RF. Endothelial function in patients with cornea guttata. Invest Ophthalmol Vis Sci 1981;20:77–85.PubMedGoogle Scholar
  26. 26.
    Starr PAJ. Changes in the permeability of the corneal endothelium in herpes simplex stromal keratitis. Proc R Soc Med 1968;61:541–542.PubMedGoogle Scholar
  27. 27.
    Ohrloff C, Rothe R, Spitznas M. Evaluation of endothelial cell function with anterior segment fluorophotometry in Pseudophakic patients. J Cataract Refract Surg 1987;13:531–533.PubMedGoogle Scholar
  28. 28.
    Bourne WM, Brubaker RF. Decreased endothelial permeability in the iridocorneal endothelial syndrome. Ophthalmology 1982; 89:591–595.PubMedGoogle Scholar
  29. 29.
    Ehrlich P. Uber provocirte Fluorescenzerscheinungen am Auge. Dtsch Med Wochenshr 1882;8:35–37.CrossRefGoogle Scholar
  30. 30.
    Linner E, Friedenwald JS. The appearance time of fluorescein as an index of aqueous flow. Am J Ophthalmol 1957;44:225–229.PubMedGoogle Scholar
  31. 31.
    Holm O. A photogrammetric method for estimation of the pupillary aqueous flow in the living human eye. Acta Ophthalmol (Copenh) 1968;46:254–283.CrossRefGoogle Scholar
  32. 32.
    Holm O, Krakau CET. Measurement of the flow of aqueous humor according to a new principle. Experientia (Basel) 1966;22:773–774.CrossRefGoogle Scholar
  33. 33.
    Goldmann H. Uber Fluorescein in der menschlichen Vorderkammer. Ophthalmologica 1950;119:65–95.CrossRefGoogle Scholar
  34. 34.
    Nagataki S. Aqueous humor dynamics of human eyes as studied using fluorescein. Jpn J Ophthalmol 1975;19:235–249.Google Scholar
  35. 35.
    Cunha-Vaz JG, Maurice DM. Fluorescein dynamics in the eye. Doc Ophthalmol 1969;26:61–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Grotte D, Mattox V, Brubaker R. Fluorescent, physiological and pharmacokinetic properties of fluorescein glucuronide. Exp Eye Res 1985;40:23–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Blair NP, Evans MA, Lesar RS, et al. Fluorescein and fluorescein glucuronide pharmacokinetics after intravenous injection. Invest Ophthalmol Vis Sci 1986;27:1107–1114.PubMedGoogle Scholar
  38. 38.
    Brubaker RF, Gharagozloo NZ, Kalina PH, Kerstetter JR, Neault TR. Diffusional loss of fluorescein from the rabbit eye. Invest Ophthalmol Vis Sci 1988;29 (suppl):324Google Scholar
  39. 39.
    Koivo AJ, Stjernschantz J. Indentification of a fluorescein tracer model for determination of the flow rate of aqueous humor in the eye. Comput Biol Med 1979;9:1–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Yablonski ME, Zimmerman TJ, Waltman SR, et al. A fluorophotometric study of the effect of topical timolol on aqueous humor dynamics. Exp Eye Res 1978;27:135–142.PubMedCrossRefGoogle Scholar
  41. 41.
    Brubaker RF. Clinical evaluation of the circulation of aqueous humor. In Duane TD (ed): Clinical Ophthalmology. Vol. 3. Harper & Row, Philadelphia, 1986, pp. 1–11.Google Scholar
  42. 42.
    Kerstetter JR, Brubaker RF, Wilson SE, et al. Prostaglandin F—isopropylester lowers intraocular pressure without decreasing aqueous humor flow. Am J Ophthalmol 1988;105:30–34.PubMedGoogle Scholar
  43. 43.
    Brubaker RF. The flow of aqueous humor in the human eye. Tr Am Ophthalmol Soc 1982;80:391–474.Google Scholar
  44. 44.
    Reiss GR, Lee DA, Topper JE, et al. Aqueous humor flow during sleep. Invest Ophthalmol Vis Sci 1984;25:776–778.PubMedGoogle Scholar
  45. 45.
    Carlson KH, McLaren JW, Topper JE, Brubaker RF. Effect of body position on intraocular pressure and aqueous flow. Invest Ophthalmol Vis Sci 1987;28:1346–1352.PubMedGoogle Scholar
  46. 46.
    Levene RZ, Bloom JN, Kimura R. Fluorophotometry and the rate of aqueous flow in man. II. Primary open angle glaucoma. Arch Ophthalmol 1976;94:444–447.PubMedGoogle Scholar
  47. 47.
    Johnson F, Maurice D. A simple method of measuring aqueous humor flow with intravitreal fluoresceinated dextrans. Exp Eye Res 1984;39:791–805.PubMedCrossRefGoogle Scholar
  48. 48.
    Gaul GR, Brubaker RF. Measurement of aqueous flow in rabbits with corneal and vitreous depots of fluorescent dye. Invest Ophthalmol Vis Sci 1986;27:1331–1335.PubMedGoogle Scholar
  49. 49.
    Maurice DM. The flow of water between the aqueous and vitreous compartments in the rabbit eye. Am J Physiol 1987;21:F104–108.Google Scholar
  50. 50.
    Starr PAJ. Changes in aqueous flow determined by fluorophotometry. Trans Ophthalmol Soc UK 1966;86:639–646.PubMedGoogle Scholar
  51. 51.
    Araie M, Takase M. Effects of various drugs on aqueous humor dynamics in man. Jpn J Ophthalmol 1981;25:91–111.Google Scholar
  52. 52.
    Araie M, Takase M. Effects of S-596 and Carteolol, new beta-adrenergic blockers, and flurbiprofen on the human eye: a fluorophotometric study. Graefes Arch Clin Exp Ophthalmol 1985;222:259–262.PubMedCrossRefGoogle Scholar
  53. 53.
    Coulangeon LM, Menerath JM, Sole P, et al. Fluorophotométrie par instillation. II. Effet d’un collyre bêta-bloquant chez le sujet normal. J Fr Ophthalmol 1987;10:375–380.Google Scholar
  54. 54.
    Van Genderen MM, van Best JA, Oosterhuis JA. The immediate effect of phenylephrine on aqueous flow in man. Invest Ophthalmol Vis Sci 1988;29:1469–1473.PubMedGoogle Scholar
  55. 55.
    Anselmi P, Bron AJ, Maurice DM. Action of drugs on the aqueous flow in man measured by fluorophotometry. Exp Eye Res 1968;7:486–496.CrossRefGoogle Scholar
  56. 56.
    Palm E. On the phosphate exchange between the blood and the eye. Acta Ophthalmol (Copenh) 1948;32:1–120.Google Scholar
  57. 57.
    Lugossy G. The fluorescein permeability of the blood-aqueous barrier. In Advances in Ophthalmology. Vol. 9. Karger, Basel, 1959.Google Scholar
  58. 58.
    Schrems W, Grosskopf P. Fluorophotometrie als Methode zum Nachweis von Permeabilitäts-änderungen der Blut-Kammerwasser-Schranke. Klin Monatsbl Augenheilkd 1986;188:122–127.PubMedCrossRefGoogle Scholar
  59. 59.
    Van Best JA, Kappelhop JP, Laterveer L, et al. Blood aqueous barrier permeability versus age by fluorophotometry. Curr Eye Res 1987;6:855–863.PubMedCrossRefGoogle Scholar
  60. 60.
    Flach AJ, Graham J, Kruger LP. Quantitative assessment of postsurgical breakdown of the blood-aqueous barrier following administration of 0.5% ketorolac tromethamine solution. Arch Ophthalmol 1988;106:344–347.PubMedGoogle Scholar
  61. 61.
    Miyake K. Fluorophotometric evaluation of the blood-ocular barrier function following cataract surgery and intravascular lens implantation, J Cataract Refract Surg 1968;14:560–568.Google Scholar
  62. 62.
    Kaiser RJ, Maurice DM. The diffusion of fluorescein in the lens. Exp Eye Res 1964;3:156–165.PubMedCrossRefGoogle Scholar
  63. 63.
    McLaren JW, Brubaker RF: A scanning ocular spectrofluorophotometer. Invest Ophthalmol Vis Sci 1988;29:1285–1293.PubMedGoogle Scholar
  64. 64.
    Cousins SW, Rosenbaum JT, Guss RB, Egbert PR. Ocular albumin fluorophotometric quantitation of endotoxin-induced vascular permeability. Infect Immun 1982;36:730–736.PubMedGoogle Scholar
  65. 65.
    Mitchell PG, Blair NP, Deutsch TA. Prolonged monitoring of the blood-aqueous barrier with fluorescein-labeled albumin. Invest Ophthalmol Vis Sci 1986;27:415–418.PubMedGoogle Scholar
  66. 66.
    Allansmith M, DeRamus A, Maurice DM. The dynamics of IgG in the cornea. Invest Ophthalmol Vis Sci 1979;18:947–955.PubMedGoogle Scholar
  67. 67.
    Iwata S, Miyauchi S. Biochemical studies on the use of sodium hyaluronate in the anterior eye segment. III. Histological studies on distribution and efflux process of 5-amino-fluorescein-labeled hyaluronate. Jpn J Ophthalmol 1985;29:187–197.PubMedGoogle Scholar
  68. 68.
    Jacobs R, Krohn DL. Variations in fluorescence characteristics of intact human crystalline lens segments as function of age. J Gerontol 1976;31:641–649.PubMedGoogle Scholar
  69. 69.
    Strobel J, Jacobi KW, Lohmann W, et al. Die Bedeutung von Fluoreszenzspektren fur die Beurteilung von Linsentrübungen. Klin Monatsbl Augenheilkd 1986;189:141–143.PubMedCrossRefGoogle Scholar
  70. 70.
    Harding JJ, Crabbe MJC. The lens; development, proteins, metabolism and cataract. In Davson H (ed): The Eye. Vol. 1B. Academic Press, New York, 1984, pp. 207–492.Google Scholar
  71. 71.
    Spector A, Roy D, Stauffer J. Isolation and characterization of an age-dependent polypeptide from human lens with non-trytophan fluorescence. Exp Eye Res 1975;21:9–24.PubMedCrossRefGoogle Scholar
  72. 72.
    Yu N-T, Kuck JFR, Askren CC. Red fluorescence in older and brunescent human lenses. Invest Ophthalmol Vis Sci 1979;18:1278–1280.PubMedGoogle Scholar
  73. 73.
    Occhipinti JR, Mosier MA, Burstein NL. Autofluorescence and light transmission in the aging crystalline lens. Ophthalmologica 1986; 192:203–209.PubMedCrossRefGoogle Scholar
  74. 74.
    Van Wirdum E, Mota MD, van Best JA, et al. Lens transmission and autofluorescence in renal disease. Ophthalmic Res 1988;20:317–326.PubMedCrossRefGoogle Scholar
  75. 75.
    Van Best JA, Tjin EWSJ, Tsoi A, et al. In vivo assessment of lens transmission for blue-green light by autofluorescence measurement. Ophthalmic Res 1985;17:90–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Van Best JA, Vrij L, Oosterhus JA. Lens transmission of blue-green light in diabetic patients as measured by autofluorophotometry. Invest Ophthalmol Vis Sci 1985;26:532–536.PubMedGoogle Scholar
  77. 77.
    Mosier MA, Occhipinti JR, Burstein NL. Autofluorescence of the crystalline lens in diabetes. Arch Ophthalmol 1986;104:1340–1343.PubMedGoogle Scholar
  78. 78.
    Larsen M, Kjer B, Bendtson I, et al. Lens fluorescence in relation to metabolic control of insulin-dependent diabetes mellitus. Arch Ophthalmol 1989;107:59–62.PubMedGoogle Scholar
  79. 79.
    Klang G. Measurements and studies of the fluorescence of the human lens in vivo. Acta Ophthalmol (Copenh) 1948;31(suppl): 1–152Google Scholar
  80. 80.
    Bonanno JA, Poise KA. Measurement of in vivo human stromal pH: open and closed eyes. Invest Ophthalmol Vis Sci 1987;28:522–530.PubMedGoogle Scholar
  81. 81.
    Chen F, Maurice DM. The pH in the precorneal tear film and under a contact lens measured with a fluorescent probe. Exp Eye Res 1990;50:251–259.PubMedCrossRefGoogle Scholar
  82. 82.
    Laurence DJR. A study of the absorption of dyes on bovine serum albumin by the method of polarization of fluorescence. Biochem J 1952;51:168–180.PubMedGoogle Scholar
  83. 83.
    Brubaker RF, Penniston JT, Grotte DA, Nagataki S. Measurement of fluorescein binding in human plasma using fluorescence polarization. Arch Ophthalmol 1982;100:625–630.PubMedGoogle Scholar
  84. 84.
    Herman DC, McLaren JW, Brubaker RF. A method of determining concentration of albumin in the living eye. Invest Ophthalmol Vis Sci 1988;29:133–137.PubMedGoogle Scholar
  85. 85.
    Delori FC, Castany MA, Webb RH. Fluorescence characteristics of sodium fluorescein in plasma and whole blood. Exp Eye Res 1978;27:417–425.PubMedCrossRefGoogle Scholar
  86. 86.
    Knopp JA, Longmuir IS. Intracellular measurement of oxygen by quenching of fluorescence of pyrenebutyric acid. Biochim Biophys Acta 1972;279:393.PubMedGoogle Scholar
  87. 87.
    Grynkiewcz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440–3450.Google Scholar
  88. 88.
    Langham M, Wybar KC. Fluorophotometric apparatus for the objective determination of fluorescence in the anterior chamber of the living eye. Br J Ophthalmol 1954;38:52.PubMedCrossRefGoogle Scholar
  89. 89.
    Maurice DM. A new objective fluorophotometer. Exp Eye Res 1963;2:33–38.PubMedCrossRefGoogle Scholar
  90. 90.
    Smith AT, Jones OP, Sturrock GD. An improved objective slit-lamp fluorophotometer using tungsten-halogen lamp excitation and synchronous detection. Br J Ophthalmol 1977;61:721–725.Google Scholar
  91. 91.
    Martin PA, Nunez MG, Martin-Fernandez SG, et al. The spectrophal: an intrument for ocular spectrophotometry and fluorophotometry. Graefes Arch Clin Exp Ophthalmol 1985;222:206–208.CrossRefGoogle Scholar
  92. 92.
    Maurice D. Improvements to slit lamp fluorometer: ocular fluorophotometry. In Brancato R, Coscas G (eds): Proceedings International Society of Ocular Fluorophotometry. Kugler & Ghedini, Amsterdam, 1987, pp. 1–3.Google Scholar
  93. 93.
    Brubaker RF, Coakes RL. Use of a xenon flash tube as the excitation source in a new slitlamp fluorophotometer. Am J Ophthalmol 1978;86:474–484.PubMedGoogle Scholar
  94. 94.
    Waltman SR, Kaufman HE. A new objective slit lamp fluorophotometer. Invest Ophthalmol 1970;9:247–249.PubMedGoogle Scholar
  95. 95.
    American Nation Standard for the safe use of lasers (ANSI Z136.1–1986) American National Standards Institute, New York, 1986.Google Scholar
  96. 96.
    Larsen M, Johansson LB-A. Time-resolved fluorescence properties of fluorescein and fluorescein glucuronide. Exp Eye Res 1989; 48:477–485.PubMedCrossRefGoogle Scholar
  97. 97.
    Clark BAJ, Carney LG. Refractive index and reflectance of the anterior surface of the cornea. Am J Optom Arch Am Acad Optom 1971;48:333–342.PubMedGoogle Scholar
  98. 98.
    Van Best JA, Bollemeijer JG, Sterk CC. Corneal transmission in whole human eyes. Exp Eye Res 1988;46:765–768.PubMedCrossRefGoogle Scholar
  99. 99.
    Maurice DM. The use of fluorescein in ophthalmological research. Invest Ophthalmol 1967;6:464–477.PubMedGoogle Scholar
  100. 100.
    Neault TR, McLaren JW, Brubaker JH. Spectral shift of fluorescein and carboxyfluorescein in the anterior chamber of the rabbit eye following systemic administration. Curr Eye Res 1986;5:337–341.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Richard F. Brubaker
  • David M. Maurice
  • Jay W. McLaren

There are no affiliations available

Personalised recommendations