Skip to main content

Abstract

Visualization and documentation of ocular disease has been of great interest to scientists for many years. It was logical that as new photographic techniques and optical systems evolved they would be adapted to meet these scientific needs. The first practical commercial fundus camera was introduced by Nordeson1 in 1925. This camera consisted of an optical system that was focused on the retina and projected the image of the retina onto a photographic plate. To provide sufficient illumination of the retina to expose the photographic plates, the light from the illumination source was projected through a portion of the photographic optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nordeson JW. Augenkamera zum stationaren Ophthalmoskop von Gullstrand. Ber Dtsch Ophthalmol Ges 1925;45:278.

    Google Scholar 

  2. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood of the human retina. Circulation 1961;24:82.

    PubMed  CAS  Google Scholar 

  3. Ridley H. Television in ophthalmology. Acta Ophthalmol (Copenh) 1951;2:1397–1404.

    Google Scholar 

  4. Van Heuven WAJ, Schaffer BA. Advances in televised fluorescein angiography. In: Fluorescein Angiography. Igaku Shoin, Tokyo, 1973, pp. 10–14.

    Google Scholar 

  5. Yuhazz B, Akashi RH, Urban JC, Mueller MMH. A new apparatus for video tape recording of fluorescein angiograms. Arch Ophthalmol 1973;90:481.

    PubMed  Google Scholar 

  6. Korbes N, Gesch M, Kiese wetter H, et al. Fern-sehfluoreszenzangiographie der Retina—neue technische Aspekte. Graefes Arch Clin Exp Ophthalmol 1980;213:65–70.

    Article  Google Scholar 

  7. Haining WM. Video funduscopy and fluoroscopy. Ophthalmol 1981;65:702–706.

    CAS  Google Scholar 

  8. Nelson MR, Cambier JL, Brown SI, et al. System for acquisition, analysis and archiving of ophthalmic images (IS 2000). SPIE Proc 1984; 454:72–77.

    Google Scholar 

  9. Cambier JL, Nelson MR, Brown SI, et al. Image acquisition and storage for ophthalmic fluorescein angiography. Proc IEEE 1984;224–231.

    Google Scholar 

  10. Rehkopf PG, Warnicki JW, Nelson MR, et al. Clinical experience with the ophthalmic image processing system (IS 2000). SPIE Proc 1985;535:282–285.

    Google Scholar 

  11. Rehkopf RG, Warnicki JW, Nelson MR, et al. Image processing in ophthalmology: a new clinical noninvasive diagnostic modality. In Noninvasive Assessment of the Visual System. 1985 Technical Digest Series 1. Optical Society of America 1985;WA:1–4.

    Google Scholar 

  12. Warnicki JW, Rehkopf RG, Cambier J. Development of an imaging system for ophthalmic photography. Biol Photogr 1985;53:9–18.

    CAS  Google Scholar 

  13. Delori FC, Parker JS, Mainster MA. Light levels in fundus photography and fluorescein angiography. Vis Res 1980;20:1099–1104.

    Article  PubMed  CAS  Google Scholar 

  14. Friberg TR, Rehkopf PG, Warnicki JW, Eller AW. Use of directly acquired digital fundus and fluorescein angiographic images in the diagnosis of retinal disease. Retina 1987;7:246–251.

    Article  PubMed  CAS  Google Scholar 

  15. Dallow RL: Television Ophthalmoscopy: Instrumentation and Medical Applications. Charles C Thomas, Springfield, IL, 1970.

    Google Scholar 

  16. Peli E, LaHav M. Drusen measurement from fundus photographs using computer image analysis. Ophthalmology 1976;93:1576–1580.

    Google Scholar 

  17. Miszalok V, Wollensak J. Die arteriovenose passage von flureszein in der retina: Bildanalyse und Bewertung. Fortschr Ophthalmol 1985;82:625.

    PubMed  CAS  Google Scholar 

  18. Takamoto T, Schwartz B, Marzan GT. Stereo measurement of the optic disc. Photogram. Eng Remote Sens 1979;45:79–85.

    Google Scholar 

  19. Johnson CA, Keltner JL, Drohn MA, Portney GL. Photogrammetry of the optic disc in glaucoma and ocular hypertension with simultaneous stereo photography. Invest Ophthalmol Vis Sci 1979;18:1252.

    PubMed  CAS  Google Scholar 

  20. Miszalok V, Wollensak J. Reliefbilder des hinteren augenpols. Ophthalmologica 1982;184:181.

    Article  PubMed  CAS  Google Scholar 

  21. Anerson DR. What happens to the optic disc and retina in glaucoma? Ophthalmology 1983; 90:766.

    Google Scholar 

  22. Avasthi P. Adenwala oration: the effect of cup disc ratio on intraocular pressure and visual field in diagnosing pre-glaucomatous condition. Indian J Ophthalmol 1981;29:137.

    PubMed  CAS  Google Scholar 

  23. Carpel EF, Engstrom PF. The normal cup-disc ratio. Am J Ophthalmol 1981;91:588.

    PubMed  CAS  Google Scholar 

  24. Kirsch RE, Anderson DR. Clinical recognition of glaucomatous cupping. Am J Ophthalmol 1983;75:442.

    Google Scholar 

  25. Schwartz B. Cupping and pallor of the optic disc. Arch Ophthalmol 1983;89:272–277.

    Google Scholar 

  26. Schwartz B, Reinstein NM, Liberman DM. Pallor of the optic disc: quantitative photographic evaluation. Arch Ophthalmol 1973;89:2788.

    Google Scholar 

  27. Spaeth GL, Varma R, Hanau C, et al. Optic disc vessel shift in glaucoma: image analysis versus clinical evaluation. Invest Ophthalmol Vis Sci 1987;28:1288.

    Google Scholar 

  28. Friberg TR, Eller AW, Rehkopf P, Warnicki J. Use of digital fundus and fluorescein images in laser photocoagulation of the macula. In: Laser Photocoagulation of Retinal Disease. 1988, pp. 57–61.

    Google Scholar 

  29. Rowsey JJ, Gelinder H, Krachmer J, et al. PERK corneal topography predicts refractive results in radial keratometry. Ophthalmology 1986;93(Suppl. 94).

    Google Scholar 

  30. Maguire LJ, Klyce SD, Singer DE, et al. Corneal topography in myopic patients undergoing epikeratophakia. Am J Ophthalmol 1987;103:404.

    PubMed  CAS  Google Scholar 

  31. Rowsey JJ, Reynold AE, Brown R: Corneal topography Arch Ophthalmol 1981;99:1093.

    CAS  Google Scholar 

  32. Binder PS: Selective suture removal can reduce postkeratoplasty astigmatism. Ophthalmology 1985;92:1412.

    PubMed  CAS  Google Scholar 

  33. Warnicki JW, Rehkopf PG, Curtin DY, et al. Corneal topography using computer analyzed rasterstereographic images. Appl Optics 1988;27:1135–1140.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Rehkopf, P.G., Warnicki, J.W. (1990). Ophthalmic Image Processing. In: Masters, B.R. (eds) Noninvasive Diagnostic Techniques in Ophthalmology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8896-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8896-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8898-2

  • Online ISBN: 978-1-4613-8896-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics