Advertisement

Antiviral Compounds Bind to a Specific Site Within Human Rhinovirus

  • Frank J. Dutko
  • Mark A. McKinlay
  • Michael G. Rossmann

Abstract

The approximately 100 serotypes of human rhinovirus (HRV) [1], the most commonly isolated virus from those suffering from an upper respiratory infection (common cold), represent a formidable therapeutic challenge [2]. A number of structurally unrelated compounds (Figure 39.1) have been shown to inhibit HRV uncoating (i.e., the release of viral RNA into the cytosol) as a result of site-specific binding to virions. Recently, X-ray crystallographic analysis of disoxaril, [5-[7-[4-(4,5-dihydro-2-oxazolyl)phenoxy]heptyl]-3methylisoxazole]=HRV(type 14) complexes has identified the specific binding site in the viral capsid [3,4]. In this chapter the molecular details and biological consequences of the binding of several antiviral compounds to HRV-14 are discussed.

Keywords

Antimicrob Agent Common Cold Residue Number Antiviral Compound Mengo Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A Collaborative Report (1987) Rhinoviruses—Extension of the numbering system from 89 to 100. Virology 159: 191–192CrossRefGoogle Scholar
  2. 2.
    Sperber SJ, Hayden FG (1988) Chemotherapy of rhinovirus colds. Antimicrob Agents Chemother 32: 409–419PubMedGoogle Scholar
  3. 3.
    Smith TJ, Kremer MJ, Luo M, Vriend G, Arnold E, Kamer G, Rossmann MG, McKinlay MA, Diana GD, Otto MJ (1986) The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233: 1286–1293PubMedCrossRefGoogle Scholar
  4. 4.
    Badger J, Minor I, Kremer MJ, Oliveira MA, Smith TJ, Griffith JP, Guerin DMA, Krishnaswamy S, Luo M, Rossmann MG, McKinlay MA, Diana GD, Dutko FJ, Fancher M, Rueckert RR, Heinz BA (1988) Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Proc. Nati Acad Sci USA 85: 3304–3308CrossRefGoogle Scholar
  5. 5.
    Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht H-J, Johnson JE, Kamer G, Luo M, Mosser AG, Rueckert RR, Sherry B, Vriend G (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317: 145–153PubMedCrossRefGoogle Scholar
  6. 6.
    Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229: 1358–1365PubMedCrossRefGoogle Scholar
  7. 7.
    Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke GM, Palmenberg AC (1987) The structure of Mengo virus at atomic resolution. Science 235: 182–191PubMedCrossRefGoogle Scholar
  8. 8.
    Zeichhardt H, Wetz K, Willingmann P, Habermehl K-O (1985) Entry of poliovirus type 1 and mouse Elberfeld (ME) virus into HEp-2 Cells: Receptor-mediated endocytosis and endosomal or lysosomal uncoating. J Gen Virol 66: 483–492PubMedCrossRefGoogle Scholar
  9. 9.
    Palmenberg AC (1988) Sequence alignments of picornaviral capsid proteins. International Conference on Molecular Biology of Picornaviruses, ICN—UCI, Abstr, Jan 1988Google Scholar
  10. 10.
    Diana GD, Otto MJ, Treasurywala AM, McKinlay MA, Oglesby RC, Maliski EG, Rossmann MG, Smith TJ (1988) Enantiomeric effects of homologues of disoxaril on the inhibitory activity against human rhinovirus-14. J Med Chem 31: 540–544PubMedCrossRefGoogle Scholar
  11. 11.
    Ishitsuka H, Ninomiya Y, Suhara Y (1986) Molecular basis of drug resistance to new antirhinovirus agents. J Antimicrob Chemother 18 (suppl B): 11–18PubMedGoogle Scholar
  12. 12.
    Ninomiya Y, Aoyama M, Umeda I, Suhara Y, Ishitsuka H (1985) Comparative studies on the modes of action of the antirhinovirus agents Ro 09–0410, Ro 09–0179, RMI-15,731 4’,6-dichloroflavan, and enviroxime. Antimicrob Agents Chemother 27: 595–599PubMedGoogle Scholar
  13. 13.
    Fox MP, Otto MJ, McKinlay MA (1986) Prevention of rhinovirus and poliovirus uncoating by WIN 51711, a new antiviral drug. Antimicrob Agents Chemother 30: 110–116PubMedGoogle Scholar
  14. 14.
    Alarcon B, Zerial A, Dupiol C, Carrasco L (1986) Antirhinovirus compound 44 081 R.P. inhibits virus uncoating. Antimicrob Agents Chemother 30: 31–34PubMedGoogle Scholar
  15. 15.
    Zeichhardt H, Otto MJ, McKinlay MA, Willingmann P, Habermehl K-O (1987) Inhibition of poliovirus uncoating by disoxaril (WIN 51711). Virology 160: 281–285PubMedCrossRefGoogle Scholar
  16. 16.
    Kenny MT, Dulworth JK, Torney HL (1985) In vitro and in vivo antipicornavirus activity of some phenoxypyridinecarbonitriles. Antimicrob Agents Chemother 28:745–750PubMedGoogle Scholar
  17. 17.
    Kenny MT, Dulworth JK, Torney HL (1986) In vitro and in vivo antipicornavirus activity of some P-benzoyl phenoxypyridines. Antiviral Res 6:355–367PubMedCrossRefGoogle Scholar
  18. 18.
    Otto MJ, Diana GD, McKinlay MA, Felock P, Fancher M (1987) In vitro antipicornavirus activity of WIN 54954, a new analog of disoxaril with improved spectrum and potency. Twenty-seventh Interscience Conference on Antimicrobial Agents and Chemotherapy, New York, NY, Abstr No 491.Google Scholar
  19. 19.
    Al-Nakib W, Tyrrell DAJ (1987) A “new” generation of more potent synthetic antirhinovirus compounds: Comparison of their MICs and their synergistic interactions. Antiviral Res 8: 179–188.PubMedCrossRefGoogle Scholar
  20. 20.
    Al-Nakib W, Higgins PG, Tyrrell DAJ, Barrow IG, Taylor N, Andries K (1987) Tolerance and prophylactic efficacy of a new antirhinovirus compound, R61837. Seventh International Congress of Virology, Edmonton, Alberta, Canada, Abstr No 32. 3Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Frank J. Dutko
  • Mark A. McKinlay
  • Michael G. Rossmann

There are no affiliations available

Personalised recommendations