Advertisement

Wave Propagation in Random Media

  • Vladimir Naroditsky
Conference paper
Part of the Woodward Conference book series (WOODWARD)

Abstract

We shall review here the results on the motion of a test particle in a nearest neighbors harmonic chain. For details, we refer to [1], [2]. These results were obtained by D.Durr, N.Zanghi and the author.

Keywords

Diffusion Constant Wiener Process Gibbs Measure Einstein Relation Smoluchowski Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Durr D., Naroditsky V., Zanghi N.: Research Center Bi60S, Preprint # 179/86.Google Scholar
  2. 2.
    Durr D., Naroditsky V., Zanghi N.: Annals of Physics, 1, 178, 1987.MathSciNetGoogle Scholar
  3. 3.
    Hemmen J.L.van.: Dynamics end eniicilyof the infinite harmonk’crystal, Thesis, University of Groningen (1976).Google Scholar
  4. 4.
    Lanford, O.E., Lebowitz, J.L.: Time evolution and ergodic properties of harmonic systems. in: Lecture Notes in Physics, 38, 144–177, Springer (1975).Google Scholar
  5. 5.
    Rubin, R.J.: J. of Math. Phys. 1, 309 (1960).ADSCrossRefGoogle Scholar
  6. 6.
    Rubin, R.J.: J. of Math. Phys. 2, 373 (1961).ADSCrossRefGoogle Scholar
  7. 7.
    Morita, T., Mori, H.: Prog.Theor. Phys. 56, 498 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    Durr, D., Goldstein, S., Lebowitz,J.L.: Comm.Math.Phys. 78, 507 (1981).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Nelson, E.: Dynamical theoriesofBrownianmotion, Princeton University Press (1967).Google Scholar
  10. 10.
    Smoluchowski, M. von.: Bull. Acad. Soi. Cracovie, 577 (1906).Google Scholar
  11. 11.
    Kotami S., Watanabe S.: Krein’s spectral theory of strings and generalized diffusion processes. in: Lecture Notes in Math. 923, 235–259, Springer (1982).Google Scholar
  12. 12.
    Ford, G.W., Kac, M., Mazur, P.: J. of Math. Phys. 6, 504 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Krein, S.: 1 ineinee differentzialnie uravnenia v Banachovom prastranstve Nauka (1967).Google Scholar
  14. 14.
    O’Connor, A.J., Lebowitz, J.L.: J. of Math. Phys. 15, 692 (1974).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Casher, A., Lebowitz, J.L.: J. of Math. Phys. 8, 1701 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    Delyon, F., Kunz, H., Souillard, B.: J.Phys. A 16, 25 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Lighthill, M.: Intrcduction to Fourier analysis andgonera/izedfunctions, Cambridge University Press (1958).Google Scholar
  18. 18.
    Berlin; T.H., Kac, M.: Phys. Rev. 86, 821 (1952).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Ferrari, P.A., Goldstein, S., Lebowitz, J.L.: Diffusion, mob filly and theEinstein relation Preprint (1984).Google Scholar
  20. 20.
    Calderoni, P., Durr, D.: BiBoS Preprint (1985).Google Scholar
  21. 21.
    Billingsley, P.: Convergence of probability measures John Wiley and Sons (1968).MATHGoogle Scholar
  22. 20.
    Sussmann, H.J.: Ann. Probab. 6, 19 (1978).MathSciNetMATHCrossRefGoogle Scholar
  23. 21.
    Ikeda, N., Watanabe, S.: Stochastic differential equations end diffusion processes North Holland/Kodansha (1981).Google Scholar
  24. 22.
    Marudin, A.A., Montroll, E.W., Weiss, G.H. (with Ipatova I.P.): Theory of lattice dynamics in the hermonicepproximetìon Academic Press (1963, 1971).Google Scholar
  25. 23.
    Hardy, G.H.: Divergent series, Oxford University Press (1949).MATHGoogle Scholar
  26. 24.
    Stone, C.: Illinois J. of Math. 7, 638 (1963).MATHGoogle Scholar
  27. 25.
    Freidlin, M.I., Wentzell, A.D.: Rancbm perturbation ofoynamical systems Springer (1983).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Vladimir Naroditsky

There are no affiliations available

Personalised recommendations