Advertisement

Critical Flicker Frequency: A New Look at an Old Test

  • Randall S. Brenton
  • H. Stanley Thompson
  • Charles Maxner

Abstract

If a light is repeatedly turned on and off it is seen to flicker, and if it flickers at increasing frequencies, it finally will appear to fuse into a continuous light. At higher frequencies, a subject will perceive the light to be fused as a steady light even though it is still flickering. The threshold at which this illusion can be seen is called critical flicker frequency. This threshold may also be found by decreasing the frequency until the light appears to flicker. The average of the ascending and descending values can be used to approximate the threshold of flicker perception. In the visual system critical flicker frequency, determined in this way, is a test of temporal resolution that is dependent on a subject’s conscious determination of threshold.

Keywords

Optic Neuritis Optic Neuropathy Potential Latency Critical Flicker Fusion Critical Flicker Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkhomis AR, Easterbrook M. Critical flicker fusion frequency in early chloroquine retinopathy. Can J Ophthalmol 1983;18:217–9.Google Scholar
  2. Arden GB, Gucukaglu AG. Grating test of contrast sensitivity in patients with retrobulbar neuritis. Arch Ophthalmol 1978;96:1626–8.PubMedGoogle Scholar
  3. Asselman P, Chadwick DW, Marsden DD. Visual evoked response in the diagnosis and management of patients suspected of multiple sclerosis. Brain 1975;98:261–82.PubMedCrossRefGoogle Scholar
  4. Aulhorn E, Harms H. Visual perimetry. In:Jameson D, Hurvich LM (eds) Handbook of Sensory, Physiology, Visual Psychophysics, vol VII 14. New York:Springer-Verlag:1972.Google Scholar
  5. Berg A, Dean P. Light-emitting diodes. Institute of Electrical and Electronics Engineers Proceedings, 1972.Google Scholar
  6. Besser GM, Duncan C. The time course of action of single doses of diazepam, chlopromazine, and some barbituates as measured by auditory flicker fusion and visual flicker fusion thresholds in man. Br J Pharmacol Chemother 1967;30:341–8.PubMedGoogle Scholar
  7. Betta A, DeSanta A, Saronitto C, D’Ardrea F. Flicker fusion test and occupational toxicology:Performance evaluation in workers exposed to lead and solvents. Human Toxicol 1983;2:83–90.CrossRefGoogle Scholar
  8. Braunstein EP. Beitrug zuer Lehre des intermittieren der lichtreizes der gesunden and kranken retina. Physiol. 1903;33:171.Google Scholar
  9. Brenton RS, Phelps CD. The normal field on the Humphrey field analyzer. Ophthalmologica 1986;193:56–74.PubMedCrossRefGoogle Scholar
  10. Brenton RS, Thompson HS, Musser C. flicker fusion as an indicator of optic nerve function. Unpublished data (1984) available on request from:C.S. O’Brien Library, Dept. of Ophthalmology, University of Iowa Hospitals, Iowa City, Iowa 52242.Google Scholar
  11. Brussell EM, White CW, Bross M, et al. Multi-flash campimetry in multiple sclerosis. Curr Eye Res 1981/82;1:671–77.PubMedCrossRefGoogle Scholar
  12. Chiappa HK. Evoked Potentials in Clinical Medicine. New York:Raven Press:1983.Google Scholar
  13. Christ T, Stodtmeister R, Pillunat L. The flicker test according to Aulhorn. A new method in the diagnosis of optic neuritis In Smith JL (ed) Neuro-ophthalmology Now. New York:Field, Rich and Associates, Inc.:1986.Google Scholar
  14. Cox TA, Thompson HS, Hayreh SS, et al. Visual evoked potential and pupillary signs. A comparison in optic nerve disease. Arch Ophthalmol 1982;100:1603–7.PubMedGoogle Scholar
  15. deLange DZN. Research into the dynamic nature of the human fovea cortex systems with intermittent and modulated light. I. attenuation characteristics with white and colored light. J Opt Soc Am 1958;48:777–84.CrossRefGoogle Scholar
  16. Folk JC, Thompson HS, Han DP, et al. Visual function abnormalities in central serous retinopathy. Arch Ophthalmol 1984;102:1299–1302.PubMedGoogle Scholar
  17. Galvin RJ, Regan D, Heron JR. Impaired temporal resolution of vision after acute retrobulbar neuritis. Brain 1976;99:255–68.PubMedCrossRefGoogle Scholar
  18. Glaser JS, Laflamme P. The visual evoked response:Methodology and application in optic nerve disease. In Thompson HS (ed) Topics in Neuro-Ophthalmology. Baltimore:Williams &Wilkins:1979.Google Scholar
  19. Hamano K, Miyamoto T, Nagai M, et al. Critical flicker frequencies. In Venrost G (ed) Doc Ophthalmol Proc Ser 46. Colour Vision Deficiencies VIII. Proceedings of the International Symposium Avignon. Boston:D.W. Junk Publishers:1988Google Scholar
  20. Hartman E, Lachenmayr B, Brettel H. The peripheral critical flicker frequency. Vis Res 1979;19:1019–23. Harvey LO. Flicker sensitivity and apparent brightness as a function of surround luminance. J Opt Soc Am 1970;40:860–4.Google Scholar
  21. Hecht S, Pirenne MH. Intermittent stimulation by light. III, The relationship between intensity and critical fusion frequency for different retinal locations. J Gen Physiol 1933;17:251.PubMedCrossRefGoogle Scholar
  22. Hecht S, Shlaer S. Intermittent stimulation by light. I, The relation between intensity and critical frequency for different parts of the spectrum. J Gen Physiol 1936;19:965–79.PubMedCrossRefGoogle Scholar
  23. Hecht S, Shlaer S, Smith EL. Intermittent light stimuli and the duplicity theory of vision. Cold Spring Harbor Symp Quant Biol 1935;3:237–44.Google Scholar
  24. Herbolzheimer W. The effect of area on the critical flicker threshold. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1977;204:73–8.PubMedCrossRefGoogle Scholar
  25. Hylkema BS. Examination of the visual field by determining the fusion frequency. Acta Ophthalmol 1942;20:181–93.Google Scholar
  26. Kelly DH. Sine waves and flicker fusion. Proc Symp Physiology of Flicker. Doc Ophthalmol 1964;18:16.Google Scholar
  27. Kurachi Y, Yonemura D. Critical fusion frequency in retrobulbar neuritis. Arch Ophthalmol 1956;55:371–9.Google Scholar
  28. Landis C. Determinants of the critical flicker fusion threshold. Physiol Rev 1954;34:259–86. Levinson JZ. Flicker fusion phenomenon. Science 1968;160:21–8.Google Scholar
  29. Lythgoe RJ, Tansley K. The adaptation of the eye:its relation to the critical frequency of flicker. Med Res Counc Spec Rep Ser No 134, 1929.Google Scholar
  30. Mason RJ, Snelgon RS, Foster DH, et al. Abnormalities of chromatic and luminance critical flicker frequency in multiple sclerosis. Invest Ophthalmol Vis Sci 1982;23:246–52.PubMedGoogle Scholar
  31. Mathews WB, Small DG, Small M, Pountney E. Pattern reversal evoked visual potential in the diagnosis of multiple sclerosis. J Neurol Neurosurg Psychiatr 1982;40:1009–14.CrossRefGoogle Scholar
  32. Miles PW. Flicker fusion fields. II Findings in early glaucoma. Arch Ophthalmol 1950;43:661–77.Google Scholar
  33. Milner BA, Regan D, Heron JR. Differential diagnosis of multiple sclerosis by visual evoked potential recording. Brain 1974;97:755–72.PubMedCrossRefGoogle Scholar
  34. Namerow NS. Temperature effect on critical flicker fusion in multiple sclerosis. Arch Neurol 1971;25:269–75.PubMedGoogle Scholar
  35. Neima D, Regan D. Pattern visual evoked potentials and spatial vision in retrobulbar neuritis and multiple sclerosis. Arch Neurol 1984;41:198–201.PubMedGoogle Scholar
  36. Otori T, Hohki T, Nakao Y. Central critical fusion frequency in neuro-ophthalmologic practice. Doc Ophthalmol Proc Ser 1978;19:95–9.Google Scholar
  37. Overbills O, Brussell EM, White CW, et al. Evaluating visual loss with multi-flash campimetry. Can J Ophthalmol 1984;19:253–60.Google Scholar
  38. Parsons OA, Miller PN. Flicker fusion thresholds in multiple sclerosis. Arch Neurol Psychiatr 1957;77:134–9.Google Scholar
  39. Patterson VA, Foster DH, Heron JR, et al. Multiple sclerosis:luminance threshold and measurements of temporal characteristics of vision. Arch Neurol 1981;38:687–89.PubMedGoogle Scholar
  40. Phillips G. Perception of flicker in lesions of the visual pathways. Brain 1933;56:464–78.CrossRefGoogle Scholar
  41. Riddell LA. The use of the flicker phenomenon in the investigation of the field of vision. Br J Ophthalmol 1936;20:385–410.PubMedCrossRefGoogle Scholar
  42. Shickman GM. Time-dependent functions in vision. In Moses RA (ed) Adlers Physiology of the Eye, ed 5. St. Louis:C.V. Mosby:1970.Google Scholar
  43. Simonson E, Brozek J. Flicker fusion frequency background and applications. Physiol Rev 1952;32:349–78.PubMedGoogle Scholar
  44. Thompson HS, Corbett JJ. In defense of the alternating light test (letter to the editor) Neurology 1989;39:154–8.Google Scholar
  45. Thorner MW, Berk MF. Flicker fusion test in neuro-ophthalmologic conditions including multiple sclerosis. Arch Ophthalmol 1964;71:897–915.Google Scholar
  46. Titcombe AF, Willison RG. Flicker fusion in multiple sclerosis. J Neurol Neurosurg Psychiat. 1961;24:260–5.PubMedCrossRefGoogle Scholar
  47. Tyler CW. Specific deficits at flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 1981;20:204–12.PubMedGoogle Scholar
  48. van der Tweel LH, Estevez O. Subjective and objective evaluation of flicker. Doc Ophthalmol 1974;169:70–1.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Randall S. Brenton
  • H. Stanley Thompson
  • Charles Maxner

There are no affiliations available

Personalised recommendations