Skip to main content

Which Molecular and Cellular Actions of Ethanol Mediate Reinforcement?

  • Chapter
Molecular and Cellular Aspects of the Drug Addictions

Abstract

There are now several accepted CNS actions of ethanol obtainable with doses that reflect the human self-administration range. Actions at the molecular level include disordering of membrane lipids, functional alterations in membrane proteins, ion channels, and second-messenger-generating regulatory proteins, and changes in the metabolism of neurotransmitters. Actions at the cellular level include alterations in effectiveness of neurotransmitter actions, alterations in the effectiveness of specific neuronal pathways, and alterations in the spontaneous, or environmentally regulated activity of large arrays of neurons. This chapter reviews some of these molecular and cellular actions in an attempt to determine whether any “vertically linked” series of actions can yet be sufficiently aligned with the reinforcing behavioral action of alcohol to suggest the mechanisms that mediate such reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association (1987). Alcohol and Health: Sixth Report to Congress. DHHS Publication 87–1519, US Government Printing Office, Washington, DC, pp 1–147.

    Google Scholar 

  2. Blois, MS (1988). Medicine and the nature of vertical reasoning. N Engl J Med 318: 847–851.

    Article  PubMed  CAS  Google Scholar 

  3. Blois, MS (1988). Medicine and the nature of vertical reasoning. N Engl J Med 318: 847–851.

    Article  PubMed  CAS  Google Scholar 

  4. Siggins GR, Bloom FE, French ED, Madamba SF, Mancillas J, Pittman QJ, Rogers J (1987). Electrophysiology of ethanol on central neurons. Ann NY Acad Sci 492: 350–366.

    Article  PubMed  CAS  Google Scholar 

  5. Bloom FE, Siggins GR (1987). Electrophysiological action of ethanol at the cellular level. Alcohol 4: 331–337.

    Article  PubMed  CAS  Google Scholar 

  6. Bloom FE (1975). Conference Summation, in The Opiate Narcotics, The International Narcotic Research Club Conference, May 21–24, 1975. Perga-mon, New York, pp 251–259.

    Google Scholar 

  7. Siggins GR, French E (1979). Central neurons are depressed by iontophoretic and micropressure applications of ethanol and tetrahydropapaveroline. Drug Alc Depend 4: 239–243.

    Article  CAS  Google Scholar 

  8. Rogers J, Siggins JR, Schulman JR, Bloom FE (1980). Physiological correlates of ethanol intoxication, tolerance, and dependence in rat cerebellar Purkinje cells. Brain Res 196: 183–198.

    Article  PubMed  CAS  Google Scholar 

  9. Bloom FE, Siggins GR, Foote SL, Gruol D, Aston-Jones G, Rogers J, Pittman Q, Staunton D (1984). Noradrenergic involvement in the cellular actions of ethanol in E Usdin, ed. Catecholamines, neuropharmacology and central nervous system. Alan R Liss, New York, pp 159–167.

    Google Scholar 

  10. Sinclair JG, Lo GF (1981). The effects of ethanol on cerebellar Purkinje cell discharge pattern and inhibition evoked by local surface stimulation. Brain Res 204: 465–471.

    Article  PubMed  CAS  Google Scholar 

  11. Sinclair JG, Lo GF, Tiem AF (1980). The effects of ethanol on cerebellar Purkinje cells in naive and alcohol-dependent rats. Can J Physiol Pharmacol 58: 429–432.

    Article  PubMed  CAS  Google Scholar 

  12. Rogers J, Madamba SG, Staunton DA, Siggins GR (1986). Ethanol increases single unit activity in the inferior olivary nucleus. Brain Res 385: 253–262.

    Article  PubMed  CAS  Google Scholar 

  13. Siggins GR, Pittman QJ, French ED (1987b). Effects of ethanol on CA1 and CA3 pyramidal cells in the hippocampal slice preparation: An intracellular study. Brain Res 414: 22–34.

    Article  PubMed  CAS  Google Scholar 

  14. Steinbusch HWM (1984). Serotonin-immunoreactive neurons and their projections in the CNS. In A Björklund, T Hökfelt, MJ Kuhar, eds. Handbook of Chemical Neuroanatomy, vol 3, Classical Transmitters and Transmitter Receptors in the CNS, p 2, Elsevier, New York, pp 68–125.

    Google Scholar 

  15. Madamba S, Siggins GR, Battenberg E, Bloom FE (1987). Depletion of brainstem 5-hydroxytryptamine (5-HT) suppresses the excitatory effect of systemic ethanol on inferior olivary neurons (ION). Soc Neurosci Abstr 13: 501.

    Google Scholar 

  16. Daly J, Fuxe K, Jonsson G (1974). 5,7-Dihydroxytryptamine as a tool for the morphological and functional analysis of central 5-hydroxytryptamine neurons. Res Commun Chem Pathol Pharmacol 7: 175–187.

    PubMed  CAS  Google Scholar 

  17. Aston-Jones G, Foote SL, Bloom FE (1982). Low doses of ethanol disrupt sensory responses of brain noradrenergic neurones. Nature (London) 296: 857–860.

    Article  CAS  Google Scholar 

  18. Aston-Jones G, Bloom FE (1981). Activity of norepinephrine-containing locus ceruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 887–900.

    PubMed  CAS  Google Scholar 

  19. Aston-Jones G, Bloom FE (1981). Norepinephrine-containing locus ceruleus neurons in behaving rats exhibit pronounced response to non-noxious environmental stimuli. J Neurosci 1: 876–886.

    PubMed  CAS  Google Scholar 

  20. Foote S, Aston-Jones G, Bloom FE (1980). Impulse activity of locus ceruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Nat Acad Sci USA 77: 3033–3037.

    Article  PubMed  CAS  Google Scholar 

  21. Foote SL, Bloom FE, Aston-Jones G (1983). Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63: 844–914.

    PubMed  CAS  Google Scholar 

  22. Robbins TW, Everitt BJ, Cole BJ (1985). Functional hypotheses of the coeruleocortical noradrenergic projection: a review of recent experimentation and theory. Physiol Psychol 13: 127–150.

    Google Scholar 

  23. Bloom FE (1988). Neurotransmitters: past, present, and future directions. FASEB 2: 32–41.

    CAS  Google Scholar 

  24. Pineda J, Foote SL, Neville H (1987). Effects of noradrenergic locus ceruleus lesions on squirrel monkey event-related potentials. Electroenceph Clin Neurophysiol 67: 77–90.

    Article  PubMed  CAS  Google Scholar 

  25. Newlin SA, Mancillas-Trevino J, Bloom FE (1981). Ethanol causes increase in excitation and inhibition in area CA3 of the dorsal hippocampus. Brain Res 209: 113–128.

    Article  PubMed  CAS  Google Scholar 

  26. Mancillas J, Siggins GR, Bloom FE (1986). Systemic ethanol: Selective enhancement of responses to acetylcholine and somatostatin in the rat hippocampus. Science 231: 161–163.

    Article  PubMed  CAS  Google Scholar 

  27. Moore SD, Madamba SG, Joels M, Siggins GR (1988). Somatostatin augments the M-current in hippocampal neurons. Science 239: 278–280.

    Article  PubMed  CAS  Google Scholar 

  28. Nestoros JN (1980). Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science 209: 708–710.

    Article  PubMed  CAS  Google Scholar 

  29. Ticku MK, Burch T (1980). Alterations in GABA receptor sensitivity following acute and chronic ethanol treatments. J Neurochem 34: 417–423.

    Article  PubMed  CAS  Google Scholar 

  30. Ticku MK, Burch TP, Davis WC (1983). The interactions of ethanol with the benzodiazepine GABA receptor ionophore complex. Pharmacol Biochem Behav 18 (Supp): 15–18.

    Article  PubMed  CAS  Google Scholar 

  31. Mancillas J, Siggins GR, Bloom FE (1986). Somatostatin selectively enhances acetylcholine-induced excitations in rat hippocampus and cortex. Proc Natl Acad Sci USA 83: 7518–7521.

    Article  PubMed  CAS  Google Scholar 

  32. Fadda F, Franch F, Mosca E, Meloni R, Gessa GL (1987). Inhibition of voluntary ethanol intake in rats by a combination of dihydroergotoxine and thioridazine. Alc Drug Res 7 (4): 285–290.

    CAS  Google Scholar 

  33. Fadda F, Mosca E, Meloni R, Gessa GL (1985–86). Ethanol-stress interaction on dopamine metabolism in the medical prefrontal cortex. Alc Drug Res 6(6):449–454.

    Google Scholar 

  34. Mereu G, Gessa GL (1985). Low doses of ethanol inhibit the firing of neurons in the substantia nigra, pars reticulata: A GABAergic effect? Brain Res 360 (1–2): 325–330.

    Article  PubMed  CAS  Google Scholar 

  35. Gessa GL, Muntoni F. Collu M, Vargiu L, Mereu G (1985). Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348 (1): 201–203.

    Article  PubMed  CAS  Google Scholar 

  36. Waller MB, Murphy JM, McBride WJ, Lumeng L, Li T-K (1986). Effect of low dose ethanol on spontaneous motor activity in alcohol-preferring and -nonpreferring lines of rats. Pharmacol Biochem Behav 24: 617–623.

    Article  PubMed  CAS  Google Scholar 

  37. Murphy JM, McBride WJ, Lumeng L, Li T-K (1987). Contents of monoamines in forebrain regions of alcohol-preferring (P) and -nonpreferring (NP) lines of rats. Pharmacol Biochem Behav 26: 389–392.

    Article  PubMed  CAS  Google Scholar 

  38. Gatton GJ, Murphy JM, Waller MB, McBride WJ, Lumeng L, Li T-K (1987). Chronic ethanol tolerance through free-choice drinking in the P line of alcohol-preferring rats. Pharmacol Biochem Behav 28: 111–115.

    Article  Google Scholar 

  39. Gatton GJ, Murphy JM, Waller MB, McBride WJ, Lumeng L, Li T-K (1987). Persistence of tolerance to a single dose of ethanol in the selectively-bred alcohol-preferring P rat. Pharmacol Biochem Behav 28: 105–110.

    Article  Google Scholar 

  40. Kulonen E (1983). Ethanol and GABA. Med Biol 61: 147–167.

    PubMed  CAS  Google Scholar 

  41. Suzdak PD, Glowa, JR, Crawley JN, Schwartz RD, Skolnick P, Paul SM (1986). A benzodiazepine that antagonizes alcohol actions selectively. Science 234: 1243–1247.

    Article  PubMed  CAS  Google Scholar 

  42. Thatcher-Britton K, Ehlers CL, Koob GF (1988). Is ethanol antagonist RO15–4513 selective for ethanol? Science 238: 648–649.

    Article  Google Scholar 

  43. Koob GF, Braestrup C, Thatcher-Britton K (1986). The effects of FG 7142 and RO15–1788 on the release of punished responding produced by chlordiazepoxide and ethanol in the rat. Psychopharmacology 90: 173–178.

    Article  PubMed  CAS  Google Scholar 

  44. Koob GF, Strecker RE, Bloome FE (1980). Effects of naloxone on the anticonflict properties of alcohol and chlordiazepoxide. Substance and Alcohol Actions/Misues 1: 447–457.

    CAS  Google Scholar 

  45. Wise RA (1987). The role of reward pathways in the development of drug dependence. Pharmacol Ther 35 (1–2): 227–263.

    Article  PubMed  CAS  Google Scholar 

  46. Pettit HO, Ettenber A, Bloom FE, Koob GF (1984). Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacologia (Berlin) 84 (2): 167–173.

    Article  CAS  Google Scholar 

  47. Koob GF, Pettit HO, Ettenberg A, Bloom FE (1984). Effects of opiate antagonists and their quaternary derivatives on heroin self-administration in the rat. J Pharmacol Exp Ther 229 (2): 481–468.

    PubMed  CAS  Google Scholar 

  48. Ettenberg A, Pettit HO, Bloom FE, Koob GF (1982). Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacologia (Berlin) 78 (3): 204–209.

    Article  CAS  Google Scholar 

  49. Ettenberg A, Pettit HO, Bloom FE, Koob GF (1982). Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacologia (Berlin) 78 (3): 204–209.

    Article  CAS  Google Scholar 

  50. Arregui Aguirre A, Claro Izaguirre F, Goni Garrido MJ, Zarate Oleaga JA, Morgado Bernal I (1987). Effects of acute nicotine and ethanol on medial prefrontal cortex self-stimulation. Pharmacol Biochem Behav 27 (1): 15–20.

    Article  Google Scholar 

  51. Koob GF, Thatcher-Britton K, Britton DR, Roberts DCS, Bloom FE (1984). Destruction of the locus ceruleus or the dorsal NE bundle does not alter the release of punished responding by ethanol and chlordiazepoxide. Physiol Behav 33: 479–485.

    Article  PubMed  CAS  Google Scholar 

  52. Goldstein DB (1987). Ethanol-induced adaptation in biological membranes. Ann NY Acad Sci 492: 103–111.

    Article  PubMed  CAS  Google Scholar 

  53. Taraschi TF, Ellingson JS, Rubin E (1987). Membrane structual alterations caused by chronic ethanol consumption: the molecular basis of membrane tolerance. Ann NYAcad Sci 492; 171–180.

    Article  PubMed  CAS  Google Scholar 

  54. Corpechot C, Shoemaker WJ, Bloom FE, Baulieu EE (1983). Endogenous brain steroids: effect of acute ethanol ingestion. Soc Neurosci Abstr 13: 1237.

    Google Scholar 

  55. Vatier OC, Bloom FE (1988). Effect of ethanol on 3 O-OH- 05 steroid concentration in the rat brain. Res Soc Alc Abstr 12: 316 (abstract 73).

    Google Scholar 

  56. Harrison NL, Vicini S, Barker JL (1987). A steroid anesthetic prolongs inhibitory post-synaptic currents in cultured rat hippocampal neurons. J Neurosci 7: 604–609.

    PubMed  CAS  Google Scholar 

  57. Valentino RJ, Foote SL (1987). Corticotropin-releasing factor disrupts sensory responses of brain noradrenergic neurons. Neuroendocrinology 45: 28–36.

    Article  PubMed  CAS  Google Scholar 

  58. Rivier C, Rivier J, Vale W (1986). Stress-induced inhibition of reproductive functions: role of endogenous corticotropin-releasing factor. Science 231: 607–609.

    Article  PubMed  CAS  Google Scholar 

  59. Schuckit MA, Goodwin DA, Winokur GA (1972). A study of alcoholism in half siblings. Am J Psychiatry 128: 1132.

    PubMed  CAS  Google Scholar 

  60. Cloninger CR (1987). Neurogenetic adaptive mechanisms in alcoholism. Science 236: 410–416.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bloom, F.E. (1989). Which Molecular and Cellular Actions of Ethanol Mediate Reinforcement?. In: Goldstein, A. (eds) Molecular and Cellular Aspects of the Drug Addictions. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8817-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8817-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8819-7

  • Online ISBN: 978-1-4613-8817-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics