Automatic Study in Stochastic Control

  • J. P. Chancelier
  • C. Gomez
  • J. P. Quadrat
  • A. Sulem
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 10)


The purpose of this paper is to give an example of automatic generation of a complete study in stochastic control done by an expert system designed at INRIA by the authors. This study includes the:
  • automatic choice of an algorithm

  • automatic checking of the mathematical well posedness of the problem

  • automatic generation of a numerical routine

  • automatic test of this routine on a numerical example

  • automatic generation of graphics

  • automatic writing of a report describing all the obtained results.


Stochastic Control Dynamic Programming Approach Optimal Stochastic Control Local Feedback Dynamic Programming Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.P. AUBIN, Approximation of elliptic Boundary-value Problems. Wiley Inter-science, New-York, 1972.MATHGoogle Scholar
  2. [2]
    F. BASKET, M. CHANDY, R. MONTZ, J. PALACIOS Open Closed Mixed Network Of Queus With Different Class of Customers, J.A.C.M n’22, p. 248–260, 1975.Google Scholar
  3. [3]
    R.BELLMAN, Dynamic Programming,Princeton University Press,1957.Google Scholar
  4. [4]
    A. BENSOOSSAN, Stochastic Control by Functional Analysis Method, North-Holland 1982.Google Scholar
  5. [5]
    A. BENSOOSSAN, Méthodes de Perturbartion en Contrôle Optima1,1985.Google Scholar
  6. [6]
    A. BENSOUSSAN, J.L. LIONS, Applications des inéquations variationnelles en contrôle stochastique, Dunod,1978.MATHGoogle Scholar
  7. [7]
    P.F. CIARLET, The finite element method for elliptic problems, North Holland, 1978.MATHGoogle Scholar
  8. [8]
    D. CLAUDE, Decoupling of Nonlinear Systems, Systems Control Letters n’1, p242–248, 1982.MathSciNetCrossRefGoogle Scholar
  9. [9] C.COLMERAOER, Prolog en 10 figures, La Recherche 1985.Google Scholar
  10. [10]
    J.B. CRUZ, Feedback Systems, McGraw-Hill, 1972.Google Scholar
  11. [11]
    F. DELEBECQUE, J. P. QUADRAT, Sur l’Estimation des Caractéristiques Locales d’un Processus de diffusion avec Sauts, Rapport INRIA 1978.Google Scholar
  12. F. DELEBECQUE, J. P. QUADRAT, Contribution of Stochastic Control Singular Perturbation Averaging and Team Theories to an Example of Large-Scale System: Management of Hydropower Production, IEEE AC23 n’2, p209–221 1978.MathSciNetGoogle Scholar
  13. [12]
    J.C. DODO, M. GOURSAT, A. HERTZ, J.P. QUADRAT, M. VIOT Méthodes de gradient stochastique pour l’optimisation des investissements dans un réseau électrique, EDF Bulletin Serie C, n’2, 1981Google Scholar
  14. [13]
    I. ERLAND, R. TEMAM, Analyse convexe et problèmes variationnels, Dunod, 1974.Google Scholar
  15. [14]
    W.H. FLEMING, Control for small noise intensities, SIAM J.Control, vol.9, n’3, 1971.Google Scholar
  16. [15]
    W.H. FLEMING, R. RISHEL, Optimal Deterministic and Stochastic Control, Springer-Verlag, 1975.MATHGoogle Scholar
  17. [16]
    F. GEROMEL, J. LEVINE, P. WILLIS, A fast Algorithm for Systems Decoupling using Formal Calculus, L.N.C.I.S n’63, Springer-Verlag 1984.Google Scholar
  18. [17]
    P. GLOESS, Logis User’s manual, Université de Compiegne, janvier 1984.Google Scholar
  19. [18]
    P. GLOESS, Understanding Expert Systems,Université de Compiegne, janvier 1964.Google Scholar
  20. [19]
    C. GOMEZ, J.P. QUADRAT, A. SULEM, Towards an Expert System in Stochastic Control: the Hamilton-Jacobi equation Part, L.N.C.I.S n’63, Springer-Verlag 1984.Google Scholar
  21. [20]
    C. GOMEZ, J.P. QUADRAT, A. SULEM, Towards an Expert System in Stochastic Control: the Local-feedback Part, Congrés Rome sur le contrôle Stochastique, L.N.C.I.S Springer-Verlag 1985.Google Scholar
  22. [21]
    TREOSYS Numerical methods in stochastic control., RAIRO Automatique 1983.Google Scholar
  23. [22]
    M. GOURSAT, J.P. QUADRAT, Analyse numériques d’inéquations quasi variationnelles elliptiques associées à des problèmes de contrôle impulsionnel, IRIA Rapport,1975.Google Scholar
  24. M. GOURSAT, J.P. QUADRAT, Analyse numériques d’inéquations variationnelles elliptiques associées à des problèmes de temps d’arrêt optimaux, IRIA Rapport,1975.Google Scholar
  25. [23]
    J. JACOD, Calcul Stochastique et Problèmes de Martingale, Springer-Verlag, 1979.Google Scholar
  26. [24]
    E. RIEFER, J. WOLFOWITZ, Stochastic estimation of the maximum of a regression function, Ann. Math. Statistic, 23,n’3,1952.Google Scholar
  27. [25]
    H.J. KUSHNER, Probabilty methods in stochastic control and for elliptic equations, Academic Press, 1977.Google Scholar
  28. [26]
    B.J. KUSHNER, D.S. CLARK, Stochastic approximation methods for constrained and unconstrained systems, Springer Verlag,1978.Google Scholar
  29. [27]
    P.L. LIONS, B. MERCIER, Approximation numérique des équations de Jacobi-Bellman, RAIRO,14,pp.369–393, 1980.MathSciNetMATHGoogle Scholar
  30. [28]
    P. LIPCER A. SHIRIAEV Statistique des Processus Stochastiques, Presse Universitaire Moscou, 1974.Google Scholar
  31. [29]
    LISP Machine Lisp Manual, MIT Press,1982.Google Scholar
  32. [30]
    MACSYMA Manual,MIT Press,1983.Google Scholar
  33. [31]
    B.T. POLYAK, Convergence and convergence rate of iterative stochastic algorithms. Automatica i Telemekhanika, Vol.12,1976,pp.83–94.MathSciNetGoogle Scholar
  34. [32]
    B.T. POLYAR, Subgradient methods a survey of soviet research in nonsmooth optimization, C. Lemarechal and K. Mifflin eds.Pergamon Press, 1978.Google Scholar
  35. [33]
    B.T. POLYAR, Y.Z. TSYPRIN, Pseudogradient adaptation and training algorithms. Automatica i Telemekhanika,Vol.3, 1973.Google Scholar
  36. [34]
    J.P. QUADRAT, Existence de solution et algorithme de résolutions numériques de problèmes stochastiques dégénérés ou non, SIAM Journal of Control, mars 1980.Google Scholar
  37. [35]
    J.B. QUADRAT, Analyse numérique de l’équation de Bellman stochastique, IRIA Report,1975.Google Scholar
  38. [36]
    J.P. QUADRAT, On optimal stochastic control problem of large systems, Advances in filtering and optimal stochastic control, Lecture Notes in Control and Computer Science n° 42, Springer-Verlag,1982.Google Scholar
  39. [37]
    J.P. QUADRAT, M. VIOT, Product form and optimal local feedback for multi-index Markov chains, Allerton Conference,1980.Google Scholar
  40. [38]
    C. QUEINNEC, LISP Langage d’un autre type, Eyrolles, 1983.Google Scholar
  41. [39]
    H. ROBBINS, S. MONRO, A stochastic approximation method. Ann. Math. Statist., 22, pp400–407, 1951.MathSciNetMATHCrossRefGoogle Scholar
  42. [40]
    F. STROOCR, S.R.S. VARADHAN, Multidimensional Diffusion Processes, Springer-Verlag,1979.Google Scholar
  43. [41]
    TORRION, Differentes méthodes d’optimisation appliquées à la gestion annuelle du système offre-demande français. Note EDF, EEG 1985.Google Scholar
  44. [42]
    TURGEON, Optimal operation of multi-reservoir power system with stochastic inflows. Water resource resarch. April 1980Google Scholar
  45. [43]
    CHANCELIER-GOMEZ-QUADRAT-SULEM Un systeme expert pour l’optimisation de système dynamique, Congres d’Analyse Numerique INRIA Versailles Decembre 85, North Holland.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • J. P. Chancelier
    • 1
  • C. Gomez
    • 1
  • J. P. Quadrat
    • 1
  • A. Sulem
    • 1
  1. 1.INRIALe ChesnayFrance

Personalised recommendations