Advertisement

Bioreactor Performance: Process Design Methods

  • Anton Moser

Abstract

Bioprocess design, as suggested in Fig. 2.14 (including especially calculation of the conversion for prediction of the mode of reactor operation that will lead to optimal production), represents the stage where kinetic and bioreactor data are integrated. In practical situations, the dominant problems are often maintenance of sterility, improvement in the strain of microorganism, and isolation of the product. All of these greatly affect economic considerations. Once in operation, a plant using a stirred vessel can usually be modified only with respect to the operating conditions: Changing to a different type of reactor is not an option. In the planning of a new operation, selection of both the optimal mode of operation and the optimal reactor type is a foremost consideration. Selection will be even more important in the future, when large volume/low priced processes become economically competitive (cf. Fig. 1.2).

Keywords

Dilution Rate Continuous Culture Residence Time Distribution Reactor Operation Monod Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Abbot, B.J., and Gerhardt, P. (1970a). Biotechnol. Bioeng., 12, 577.Google Scholar
  2. Abbot, B.J., and Gerhardt, P. (1970b). Biotechnol. Bioeng., 12, 603.Google Scholar
  3. Adler, I., and Fiechter, A. (1983). Chem. Ing. Techn., 55, 322.Google Scholar
  4. Agrawal, P., and Lim, H.C. (1984). Adv. Biochem. Eng., 30, 61.Google Scholar
  5. Aiba, S., Humphrey, A.E., and Millis, N.F. (1973). Biochemical Engineering. New York and London: Academic Press.Google Scholar
  6. Aiba, S., et al. (1976). Biotechnol. Bioeng., 18, 1001.Google Scholar
  7. Alper, E., et al. (1980a). Chem. Eng. Sci., 35, 217.Google Scholar
  8. Alper, E., et al. (1980b). Chem. Eng. Sci., 35, 1264.Google Scholar
  9. Andrews, J.F. (1971). Biotechnol. Bioeng. Symp., 2, 5.Google Scholar
  10. Andrews, J.F. (1982). Biotechnol. Bioeng., 24, 2013.Google Scholar
  11. Andrews, J.F., and Tien, C. (1982). Amer. Inst. Chem. Eng. Journal AIChEJ, 28, 182.Google Scholar
  12. Applegate, L.E. (1984). Chem. Eng., June, 64.Google Scholar
  13. Arcuri, E.J., and Donaldson, T.L. (1981). Biotechnol. Bioeng., 23, 2149.Google Scholar
  14. Aris, R., and Humphrey, A.E. (1977). Biotechnol. Bioeng., 19, 1375.Google Scholar
  15. Atkinson, B. (1973). Pure Appl. Chem., 36, 279.Google Scholar
  16. Atkinson, B. (1974). Biochemical Reactors. London: Poin.Google Scholar
  17. Atkinson, B. (ed.) (1980). Symposium on Biological Fluidized Bed Treatment of Water and Wastewater, Water Research Centre, Stevenage Lab., Elder Way, Stevenage/ Hertfordshire, Great Britain, April 1977.Google Scholar
  18. Atkinson, B., and Fowler, H.W. (1974). Adv. Biochem. Eng., 3, 221.Google Scholar
  19. Atkinson, B., and Knights, A.J. (1975). Biotechnol. Bioeng., 17, 1245.Google Scholar
  20. Atkinson, B., and Kossen, N.W.F. (1978). Proceedings of the 1st European Congress on Biotechnology, Interlaken, Switzerland, Dechema Monograph, 82, 37Google Scholar
  21. Atkinson, B., et al. (1980). Proc. Biochem., May, 24.Google Scholar
  22. Atkinson, B., and Mavituna, F. (1983). Biochemical Engineering and Biotechnology Handbook. Nature Press, Macmillan. Byfleet, Surrey England.Google Scholar
  23. Atkinson, B., and Davis, I.J. (1972). Trans. Inst. Chem. Engrs. 50, 208.Google Scholar
  24. Bahl, H., et al. (1982). Eur. J. Appl. Microbiol. Biotechnol., 15, 201.Google Scholar
  25. Bailey, J.E. (1973). Chem. Eng. Commun., 1, 111.Google Scholar
  26. Bailey, J.E., and Ollis, D.F. (1977). Biochemical Engineering Fundamentals. New York: McGraw-Hill, p. 642.Google Scholar
  27. Bajpaj, R.K., and Reuss, M. (1982). Canad. J. Chem. Eng., 60, 384.Google Scholar
  28. Bajpaj, R.K., and Reuss, M. (1981). Biotechnol. Bioeng., 23, 717.Google Scholar
  29. Bajpaj, R.K., and Reuss, M. (1980). J. Chem. Techn. Biotechnol., 30, 322.Google Scholar
  30. Baker, C.G.J., et al. (1980). In Moo-Young M., et al. (eds.). Proceedings of the 6 th International Fermentation Symposium, Vol. 1. Oxford: Pergamon Press, 635.Google Scholar
  31. Barford, J.P., et al. (1982). In Bazin, M.J. (ed.). Microbial Population Dynamics. Boca Raton, Fla.: CRC Press, p. 55.Google Scholar
  32. Baxerres, J.L., Haewsungcharern, A., and Gibert, H. (1977). Lebensm.-Wiss. Technol., 10, 191.Google Scholar
  33. Bazin, M.J. (ed.) (1982). Microbial Population Dynacs. Boca Raton, Fla.: CRC Press.Google Scholar
  34. Bentley, T.L., and Kincannon, D.F. (1976). Water Yewage Work, R 10.Google Scholar
  35. Bergter, F. (1972). Wachstum von Mikroorganismen. Jena: G. Fischer Verlag.Google Scholar
  36. Biggs, R.D. (1963). Canad. J. Chem. Eng., 60, 384.Google Scholar
  37. Bischoff, K.B. (1966). Canad. J. Chem. Eng., 45, 281.Google Scholar
  38. Björkman, U. (1987). Biotechnol. Bioeng., 29, 101 and 114.Google Scholar
  39. Blenke, H. (1979). Adv. Biochem. Eng., 13, 122.Google Scholar
  40. de Boks, P.A., and van Eybergen, G.C. (1981). Biotechnol. Leu., 3, 577.Google Scholar
  41. Borzani, W., et al. (1976). Biotechnol. Bioeng., 18, 623, 885.Google Scholar
  42. Brown, D.E. (1981). Instn. Chem. Eng., Ser. 64, N7.Google Scholar
  43. Bruxelmane, M. (1983). Tech. l’Ingen., 2, A5910.Google Scholar
  44. Bryant, J. (1977). Adv. Biochem. Eng., 5, 101.Google Scholar
  45. Bryant, J., and Sadeghzadeh, N. (1979). Paper F3 presented at 3rd Eur. Conf. on Mixing, Univ. of York, Great Britain. April 4–6.Google Scholar
  46. Bull, D.N., and Young, M.D. (1981). Biotechnol. Bioeng., 23, 373.Google Scholar
  47. Bu’Lock, J.D. (1965). The Biosynthesis of Natural Products. New York: McGraw-Hill, Chap. 1.Google Scholar
  48. Bu’Lock, J.D., et al. (1965). Canad. J. Microbiol., 11, 765.Google Scholar
  49. Bungay, H.R., III, and Bungay, M.L. (1968). Adv. Appl. Microbiol., 10, 269.Google Scholar
  50. Bungay, H.R., III, et al. (1969). Biotechnol. Bioeng., 11, 765.Google Scholar
  51. Calderbank, P.H., and Moo-Young, M. (1959). Trans. Instn. Chem. Engrs., 37, 26.Google Scholar
  52. Cameron, I.L., and Padilla, C.M. (eds.) (1966). Cell Synchrony. New York: Academic Press.Google Scholar
  53. Charaklis, W.G. (1981). Biotechnol. Bioeng., 23, 1923.Google Scholar
  54. Charaklis, W.G., et al. (1982). Water Res., 0, 1.Google Scholar
  55. Charles, M. (1978). Adv. Biochem. Eng., 8, 1.Google Scholar
  56. Charley, R.C., et al. (1983). Biotechnol. Lett., 5, 169.Google Scholar
  57. Chen, J.W., et al. (1965). Ind. Eng. Chem., Proc. Des. Dev., 4, 421.Google Scholar
  58. Chi, C.T., and Howell, J.A. (1976). Biotechnol. Bioeng., 18, 63.Google Scholar
  59. Chi, C.T., et al. (1974). Chem. Eng. Sci., 29, 207.Google Scholar
  60. Constantinides, A., et al. (1981). Biotechnol. Bioeng., 23, 899.Google Scholar
  61. Cooker, B., et al. (1983). Chem. Eng., Proc. Des. Dev., 19, 600.Google Scholar
  62. Cooney, Ch.L. (1979). Proc. Biochem., 14, May, 31.Google Scholar
  63. Cooney, Ch.L., and Acevedo, F. (1977). Biotechnol. Bioeng., 19, 1449.Google Scholar
  64. Cooney, Ch.L., and Wang, D.I.C. (1976). Biotechnol. Bioeng., 18, 189.Google Scholar
  65. Coughlin, R.W., et al. (1975). Chem. Ing. Techn., 47, 111.Google Scholar
  66. Coulman, G.A., et al. (1977). Appl. Environ. Microbiol., 34, 725.Google Scholar
  67. Court, J.R., and Pirt, S.J. (1976). 5th Internat. Ferment. Symp., Berlin, 6. 21.Google Scholar
  68. Cysewski, C.R., and Wilke, Ch.R. (1978). Biotechnol. Bioeng., 20, 1421.Google Scholar
  69. Daigger, G.T., and Grady, C.P.L. (1982). Biotechnol. Bioeng., 24, 1427.Google Scholar
  70. Dairaku, K., et al. (1981). Biotechnol. Bioeng., 23, 2069.Google Scholar
  71. Danckwerts, P.V. (1958). Chem. Eng. Sci., 8, 93.Google Scholar
  72. Dawson, P. (1972a). J. Appl. Chem. Biotechnol., 22, 79.Google Scholar
  73. Dawson, P. (1972b). In Fermentation Technology Today (Terui G., ed.) Proc. 4th Intern. Ferment. Symp. Society of Ferment. Technol. Japan Osaka, p. 121.Google Scholar
  74. Dawson, P. (1980a). In Bioconversion and Biochem. Engineering (Ghose, T.K., ed.) Proc. 2nd Symp., Indian Institute of Technology, New Delhi Vol. 2, p. 275.Google Scholar
  75. Dawson, P. (1980b). Paper at 6th Intern. Ferment. Symp., London/Ontario July 20–25, no. F-8. 1. 2.Google Scholar
  76. Dawson, P. (1980c). Paper at 6th Intern. Ferment. Symp., London/Ontario July 20–25, no. F-8. 1. 10.Google Scholar
  77. Dean, A.C.R., et al. (1972). Environmental Control of Cell Synthesis and Function. New York: Academic Press.Google Scholar
  78. Deindoerfer, F.H., and Humphrey, A.E. (1959). Ind. Eng. Chem. 51, 809.Google Scholar
  79. Demain, A.L., et al. (1979). Proc. Symp. Soc. Gen. Microbiol., 29.Google Scholar
  80. Dorawala, T.G., and Douglas, J.M. (1971). Amer. Inst. Chem. Eng. Journal AIChEJ, 17, 974.Google Scholar
  81. Dostalek, M., and Häggstrom, M. (1982). Biotechnol. Bioeng., 24, 2077.Google Scholar
  82. Douglas, J.M. (1972). Process Dynamics and Control, Vol. 2. Englewood Cliffs, N.J.: Prentice Hall.Google Scholar
  83. Dunn, I.J., and Mor, J.R. (1975). Biotechnol. Bioeng., 17, 1805.Google Scholar
  84. Eckenfelder, W.W. (1966). Industrial Water Pollution Control. New York: McGraw-Hill, Chap. 13.Google Scholar
  85. Edwards, V.H. et al. (1970). Biotechnol. Bioeng., 17, 975.Google Scholar
  86. Eggers, E., and Terlouw, T. (1979). Water Res., 13, 1077.Google Scholar
  87. Eilers, H. (1941), Kolloid Z., 97, 313.Google Scholar
  88. Einsele, A., and Finn, R.K. (1980). Ind. Eng. Chem., Proc. Des. Dev., 19, 600.Google Scholar
  89. Einstein, A. (1906). Ann. Physik., 19, 289.Google Scholar
  90. Einstein, A. (1911). Ann. Physik., 34, 591.Google Scholar
  91. Eirich, F., et al. (1936). Kolloid Z., 74, 276.Google Scholar
  92. Erickson, L.E., et al. (1972). J. Appl. Chem. Biotechnol., 22, 199.Google Scholar
  93. Esener, A.A., et al. (1981a). Biotechnol. Lett., 3, 15.Google Scholar
  94. Esener, A.A., et al. (198 lb). Eur. J. Appl. Microb. Biotechnol., 13, 141.Google Scholar
  95. Esener, A.A., et al. (1981c). Biotechnol. Bioeng., 23, 1851.Google Scholar
  96. Fan, L.T., Erickson, L.E., Shah, P.S., and Tsai, B.I. (1970). Biotechnol. Bioeng., 12, 1019.Google Scholar
  97. Fan, L.T., Tsai, B.I., and Erickson, L.E. (1971). Amer. Inst. Chem. Eng. Journal AIChEJ, 17, 689.Google Scholar
  98. Fend, Z. (1964). In Malek, I, et al. (eds.). Proceedings of Symposium on Continuous Culture of Microorganisms. Prague: Csechoslovak Academy of Sciences, p. 23.Google Scholar
  99. Fend, Z., and Novak, M. (1969). Folia Microb., 14, 314.Google Scholar
  100. Fend, Z., et al. (1969). In Perlman, D., (ed.). Fermentation Advances. New York: Academic Press, p. 301.Google Scholar
  101. Fend, Z., et al. (1972). J. Appl. Chem. Biotechnol., 22, 405.Google Scholar
  102. Fend, Z., et al. (1978). In Proceedings of the 7th Symposium on Continuous Culture of Microorganisms. Sikyta, B., et al. (eds.). Czechosl. Acad. of Sciences Prague: (1980) p. 49.Google Scholar
  103. Fiechter, A. (1982). In Rehm, H.J., and Reed, G. (eds.). Biotechnoloby-A Comprehensive Treatise, Vol. 1. Deerfield Beach, Fla., and Basel, Verlag Chemie Weinheim, Chap. 7.Google Scholar
  104. Finn, R.K., and Fiechter, A. (1979). Symp. Soc. Gen. Microbiol., 20, 83.Google Scholar
  105. Furusaki, S., and Miyauchi, T. (1977). J. Chem. Eng. (Jap.), 10 (3), 247.Google Scholar
  106. Gerhardt, P., and Gallup, D.M. (1963). J. Bacteriol., 86, 919.Google Scholar
  107. Gerstenberg, H., et al. (1980). Chem. Ing. Techn., 52, 19.Google Scholar
  108. Geurts, Th.G., et al. (1980). Biotechnol. Bioeng., 22, 2031.Google Scholar
  109. Goma, G., et al. (1979). Biotechnol. Lett., 1, 415.Google Scholar
  110. Goto, S., et al. (1973). J. Ferment. Technol., 51, 582.Google Scholar
  111. Greenshields, R.N., and Smith, E.L. (1974). Proc. Biochem., April, 11.Google Scholar
  112. Grieves, R.B., et al. (1964). J. Appl. Chem., 14, 478.Google Scholar
  113. Gutke, R. (1980, 1982). In UNEP/UNESCO/ICRO training course, Theoretical Basis of Kinetics of Growth, Metabolism and Product Formation of Microorganisms. Jena: Science, Academy of East Germany, ZIMET, Vol. 1, p. 112 (1980); pps. 39 and 58 (1982).Google Scholar
  114. Gutke, R., and Knorre, W.A. (1980). Z. Allgem. Mikrobiol., 20 (7), 441.Google Scholar
  115. Gutke, R., and Knorre, W.A. (1981). Biotechnol. Bioeng., 23, 2771.Google Scholar
  116. Gutke, R., and Knorre, W.A. (1982). Biotechnol. Bioeng., 24, 2129.Google Scholar
  117. Gutke, R., et al. (1980). Biotechnol. Lett., 2, 315.Google Scholar
  118. Hamer, G. (1982). Biotechnol. Bioeng., 24, 511.Google Scholar
  119. Hamer, G. (1982). Biotechnol. Bioeng., 24, 511.Google Scholar
  120. Harremoës, P. (1978). In Mitchell, R., (ed.), J. Wiley & Sons N.Y. Water Pollution Microbiology, Vol. 2. Chap. 4.Google Scholar
  121. Harris, N.P., and Hansford, G.S. (1976). Water Res., 10, 935.Google Scholar
  122. Harrison, D.E.F., and Topiwala, H.H. (1974). Adv. Biochem. Eng., 3, 167.Google Scholar
  123. Heckershoff, H., and Wiesman, U. (1981). Chem. Ing. Techn., 53, 268.Google Scholar
  124. Heijnen, J.J., et al. (1979). Biotechnol. Bioeng., 21, 2175.Google Scholar
  125. Heijnen, J.J., and Roels, J.A. (1981). Biotechnol. Bioeng., 23, 739.Google Scholar
  126. Herbert, D. (1961). In Proceedings of Symposium on Continuous Culture of Microorganisms. London: Elsworth R., ed. Society of Chemical Industry Monograph 12, p. 21.Google Scholar
  127. Herbert, D. (1964). In Malek, I., et al. (eds.). Continuous Cultivation of Microorganisms. Prague: Czechoslovak Academy of Science, p. 23.Google Scholar
  128. Herbert, D., et al. (1956). J. Gen. Microbiol., 14, 601.Google Scholar
  129. Herzog, P., et al. (1983). Chem. Ing. Techn., 55, 566.Google Scholar
  130. Holmes, D.B., et al. (1964). Chem. Eng. Sci., 19, 201.Google Scholar
  131. Howell, J.A., and Atkinson, B. (1976). Biotechnol. Bioeng., 18, 15.Google Scholar
  132. Hughmark, G. (1980). Ind. Eng. Chem., Proc. Des. Dev., 19, 638.Google Scholar
  133. Humphrey, A.E. (1978). Am. Chem. Soc. Symp., Ser. 72.Google Scholar
  134. Humphrey, A.E. (1980). Adv. Biotechnol., 1, 203.Google Scholar
  135. Irvine, R.L., et al. (1980). J. Water Poll. Contr. Fed., 52, 1997.Google Scholar
  136. Jennings, P.A., et al. (1976). Biotechnol. Bioeng., 18, 1249.Google Scholar
  137. Joshi, J.B. (1980). Trans. Instn. Chem. Engrs., 58, 155.Google Scholar
  138. Joshi, J.B., et al. (1982). Chem. Eng. Sci., 37, 813.Google Scholar
  139. Kan, J.K., and Shuler, M.L. (1976). Amer. Inst. Chem. Eng. Symp. Ser. 172, 31.Google Scholar
  140. Kan, J.K., and Shuler, M.L. (1978). Biotechnol. Bioeng., 20, 217.Google Scholar
  141. Kargi, F., and Park, J.K. (1982). J. Chem. Techn. Biotechnol., 32, 744.Google Scholar
  142. Katinger, H. (1976). Paper presented at 5th Internat. Ferment. Symp., June 28-July 3 Berlin, No. 4. 16.Google Scholar
  143. Keller, R., and Dunn, I.J. (1978a). J. Appl. Chem. Biotechnol., 28, 508.Google Scholar
  144. Keller, R., and Dunn, I.J. (1978b). J. Appl. Chem. Biotechnol., 28, 784.Google Scholar
  145. Khang, S.J., and Levenspiel, 0. (1979). Chem. Eng. Sci., 31, 569.Google Scholar
  146. Kincannon, D.F., and Sherrard, J.H. (1974). Water Sewage Work, R32.Google Scholar
  147. Kipke, K.D. (1984). In Process Variables in Biotechnology, Bioreactor Performance working group chairman W. Crueger, Dechema Monograph, Chap. 20.Google Scholar
  148. Kishimoto, M., et al. (1976). J. Ferment. Technol., 54, 891.Google Scholar
  149. Kitai, A., et al. (1969). Biotechnol. Bioeng., 11, 911.Google Scholar
  150. Kjaergaard, L., and Jorgensen, B.B. (1979). Biotechnol. Bioeng., 21, 147.Google Scholar
  151. Klei, H.E., et al. (1975). J. Appl. Chem. Biotechnol., 25, 535.Google Scholar
  152. Knorre, W.A. (1968). In Proceedings of 4th Symposium on Continuous Culture of Microorganisms. Prague; Malek, J., et al. (eds.) (1969): Academia, Prague p. 225.Google Scholar
  153. Knorre, W.A. (1980). In Beier, W., and Rosen, R. (eds.). Biophysikalische Grundlagen der Medizin. Stuttgart, New York: G. Fischer, p. 132.Google Scholar
  154. Koga, S., and Humphrey, A.E. (1967). Biotechnol. Bioeng., 9, 375.Google Scholar
  155. Kong, M.F., and Yang, P.Y. (1979). Biotechnol. Bioeng., 21, 417.Google Scholar
  156. Kornegay, B.H. (1969). In Proceedings of 24th Industrial Waste Conference. Purdue Univ., Lafayette, Ind. p. 1398.Google Scholar
  157. Kornegay, B.H. (1975). Mathematical Modelling of Water Pollution Control Bioprocess, Keinath, T.M. and Wainielista, M. (eds.), Ann Arbor, Mich., Ann Arbor Science Publ. Inc.Google Scholar
  158. Kornegay, B.H., and Andrews, J.F. (1968). J. Water Poll. Contr. Fed., 40, R460.Google Scholar
  159. Kosaric, N., et al. (1980). Adv. Appl. Microbiol., 26, 147.Google Scholar
  160. Kramers, H., et al. (1953). Chem. Eng. Sci., 2, 35.Google Scholar
  161. Kuhn, H.J., et al. (1980). Eur. J. Appl. Microbiol. Biotechnol., 10, 303.Google Scholar
  162. Kling, W., and Moser, A. (1986). Bioprocess Engng., 1, 23.Google Scholar
  163. Kling, W., and Moser, A. (1986). Bioprocess Engng., 1, 23.Google Scholar
  164. Lacey, R.E. (1972). Chem. Eng., September 4, 56.Google Scholar
  165. Laederach, H., et al. (1978). In Preprints 1st Europ. Congr. Biotechnology, Interlaken, Switzerland, Sept. 25–29, Dechema, Frankfurt.Google Scholar
  166. La Motta, E. J. (1976). Biotechnol. Bioeng., 18, 1359.Google Scholar
  167. Lane, A.G. (1977). J. Appl. Chem. Biotechnol., 27, 165.Google Scholar
  168. Lee, H.H., and Yan, B.D. (1981). Chem. Eng. Sci., 36, 483.Google Scholar
  169. Lee, I.H., et al. (1976). Biotechnol. Bioeng., 18, 513.Google Scholar
  170. Lee, J.M., et al. (1983). Biotechnol. Bioeng., 25, 497.Google Scholar
  171. Leegwater, M.P.M., et al. (1982). J. Chem. Technol. Biotechnol., 32, 92.Google Scholar
  172. Levenspiel, O. (1972). Chemical Reaction Engineering. New York: John Wiley.Google Scholar
  173. Levenspiel, O. (1979). The Chemical Reactor Omnibook. Corvallis, Ore.: OSU Book Stores.Google Scholar
  174. Levenspiel, O. (1980). The Monod Equation; A Revisit; Biotechnology and Bioengineering, 22, 1671–1687, John Wiley and Sons, Inc.Google Scholar
  175. Liepe, F., et al. (1978). In reprints, 1st European Congress on Biotechnology, Interlaken, Switzerland, Part 1, p. 78.Google Scholar
  176. Lilly, M.D., and Dunnill, P. (1971). Proc. Biochem., 6 (8), 29.Google Scholar
  177. Lilly, M.D., and Dunnill, P. (1972a). Adv. Biochem. Eng., 3, 221.Google Scholar
  178. Lilly, M.D., and Dunnill, P. (1972b). Biotechnol. Bioeng. Symp., 3, 221.Google Scholar
  179. Lilly, M.D. (1982). J. Chem. Techn. Biotechnol., 32, 162.Google Scholar
  180. Lippert, J., et al. (1983). Biotechnol. Bioeng., 25, 437.Google Scholar
  181. Luedeking, R., and Piret, E.L. (1959). Biotechnol. Bioeng., 1, 431.Google Scholar
  182. Luttman, R., et al. (1981). Eur. J. Appl. Microbiol. Biotechnol., 13, 90, 145.Google Scholar
  183. Maiorella, B., et aI. (1981). Adv. Biochem. Eng., 20, 43.Google Scholar
  184. Malek, I., and Fencl, Z. (1966). Theoretical and Methodological Basis of Continuous Culture of Microorganisms. New York: Academic Press.Google Scholar
  185. Malek, I., and Ricica, J. (1969). Folio Microbiol., 14, 254.Google Scholar
  186. Margaritis, A., and Wilke, Ch.R. (1972). Dev., Ind. Microbiol., 13, 159.Google Scholar
  187. Margaritis, A., and Wilke, Ch.R. (1978a). Biotechnol. Bioeng., 20, 709.Google Scholar
  188. Margaritis, A., and Wilke, Ch.R. (1978b). Biotechnol. Bioeng., 20, 727.Google Scholar
  189. Marsot, P., et al. (1981). Biotechnol. Lett., 3, 689.Google Scholar
  190. Matsumura, M., et al. (1981). J. Ferment. Technol., 59, 115.Google Scholar
  191. Mattiasson, B. (1983). Trends in Biotechnology, 1, 16.Google Scholar
  192. McGrath, M.J., and Yang, R.Y.K. (1975). Chem. Eng. J., 9, 187.Google Scholar
  193. Melling, J. (1977). In Wiseman, A. (ed.). Topics in Enzyme and Fermentation Biotechnology, Vol. 1. Chichester: Ellis Horwood Ltd., p. 10.Google Scholar
  194. Mersmann, A., et al. (1976). Int. Chem. Eng., 16, 590.Google Scholar
  195. Merz, A., and Vogg, H. (1978). Chem. Ing. Techn., 50, 108.Google Scholar
  196. Metcalf & Eddy Engineers. (1972, 1979 ). Waste Water Engineering Treatment, Disposal and Reuse. New York: McGraw-Hill.Google Scholar
  197. Metz, B. (1981). Biotechnol. Bioeng., 23, 149.Google Scholar
  198. Metz, B., and Kossen, N.W.F. (1977). Biotechnol. Bioeng., 19, 781.Google Scholar
  199. Metz, B., et al. (1979). Adv. Biochem. Eng., 11, 103.Google Scholar
  200. Metzner, A.B. (1957). Americ. Inst. Chem. Eng. Journal AIChEJ, 3, 3.Google Scholar
  201. Middleton, J.C. (1979). Paper A2 presented at 3rd Eur. Conf. on Mixing, York, Great Britain.Google Scholar
  202. Molin, G., et al. (1982). Eur. J. Appl. Microbiol. Biotechnol., 15, 218.Google Scholar
  203. Monod, J. (1942). Recherches sur la Croissance des Cultures Bacteriennes. Paris: Hermann.Google Scholar
  204. Monod, J. (1950). Ann. Inst. Pasteur, 79, 390.Google Scholar
  205. Mooney, U. (1951). J. Colloid. Sci., 6, 162.Google Scholar
  206. Moreno, M., and Goma, G. (1979). Biotechnol. Lett., 1, 483.Google Scholar
  207. Moser, A. (1973). In Dellweg, H. (ed.). Proceedings of the 3rd Symposium on Technical Microbiology. Inst. für Gärungsgewerbe und Biotechnologie Berlin, p. 61.Google Scholar
  208. Moser, A. (1977). Chem. Ing. Techn., 49, 612.Google Scholar
  209. Moser, A. (1980a). In Moo-Young, M., et al. (eds.). Proceedings of the 2nd Intern. Symp. on Waste Treatment & Utilization, Vol. 2. Oxford: Pergamon Press, p. 177.Google Scholar
  210. Moser, A. (1980b). In Ghose, T.K. (ed.). Proceedings of the 2nd International Symposium on Bioconversion and Biochemical Engineering, Vol. 2. New Delhi: Indian Inst. Technology, p. 253.Google Scholar
  211. Moser, A. (1982). Biotechnol. Lett., 4, 281.Google Scholar
  212. Moser, A. (1983a). Proc. Adv. Ferment., 83 (Suppl. Proc. Biochem. ), 201.Google Scholar
  213. Moser, A. (1983b). In Proceedings of the 33rd Canadian Chemical Engineering Conference, Toronto, Canad. Soc. for Chem. Eng., Oct. 2–5. Vol. 2, p. 417.Google Scholar
  214. Moser, A. (1984a). In Ghose, T.K. (ed.). Proceedings of the 7th International Biotechnology Symposium, Vol. 2. New Delhi: Indian Inst. Technology, p. 529.Google Scholar
  215. Moser, A. (1984b). Acta Biotechnolog., 4, 3.Google Scholar
  216. Moser, A. (1987). In Crueger, W., et al. (eds.). Physical Aspects of Bioreactor Performance report of working party Bioreactor Performance of Europ. Fed. Biotechnol., Dechema, Frankfurt, Chap. 4.Google Scholar
  217. Moser, A. (1985a). In Rehm, H.J., and Reed, G. (eds.). Biotechnology A comprehensive Treatise, Vol. 2. Deerfield Beach, Fla., and Basel: Verlag Chemie Weinheim, Chaps. 15 and 16.Google Scholar
  218. Moser, A. (1985c). Conservation & Recycling, Vol. 8. No. 1/2, 193–210, Pergamon Press, Oxford.Google Scholar
  219. Moser, A., Preselmayr, W., and Scherbaum, H. (1974). In Proceedings of the 4th International Symposium on Yeasts, Part I, Klaushofer, H. and U., Sleytr (eds.), Univ. of Bodenkultur, Vienna, p. 117.Google Scholar
  220. Moser, F. (1977). Verfahrenstechnik, 11, 670.Google Scholar
  221. Moser, F. (1980). In Moser, F. (ed.). Grundlagen der Abwasserreinigung, Vol. 2. Munich: Oldenburg, p. 431.Google Scholar
  222. Moser, F., et al. (1977). Prog. Water Tech., 8, 235.Google Scholar
  223. Moser, F., et al. (1979). Osten-. Abwasser Rund., 24, 83.Google Scholar
  224. Mou, D.G. (1979). Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass.Google Scholar
  225. Mou, D.G., and Conney, Ch.L. (1983a). Biotechnol. Bioeng., 25, 225.Google Scholar
  226. Mou, D.G., and Conney, Ch.L. (1983b). Biotechnol. Bioeng., 25, 257.Google Scholar
  227. Mukataka, S. (1981). J. Ferment. Technol., 59, 303.Google Scholar
  228. Mukataka, S., et al. (1980). J. Ferro. Technol., 58, 155.Google Scholar
  229. Mulcahy, L.T., and La Motta, E.J. (1978). Rep. no. 59–78–2, Environmental Engineering Program, Dept. Civil Engng., University of Massachusetts, Amherst.Google Scholar
  230. Nagai, S., et al. (1968). J. Gen. Appl. Microbiol., 14, 121.Google Scholar
  231. Nagel, O. et al. (1977). Chem. Ing. Tech., 44, 367.Google Scholar
  232. Nagel, O., Hegner, B., and Kürten, H. (1978). Chem. Ing. Techn., 50, 934.Google Scholar
  233. Nagel, O., Kürten, H., and Sinn, R. (1972). Chem. Ing. Techn., 44, 367.Google Scholar
  234. Nestaas, E., and Wang, D.I.C. (1981). Biotechnol. Bioeng., 23, 2803.Google Scholar
  235. Norwood, K.W., and Metzner, A.B. (1960). Americ. Inst. Chem. Eng. Journal, 6, 432.Google Scholar
  236. Novick, A., and Szilard, L. (1950). Proc. Nat. Acad. Sci., Wash., 36, 708.Google Scholar
  237. Oleszkiewicz, J. (1976). Environ. Protect. Eng., 2, 85.Google Scholar
  238. Oleszkiewicz, J. (1977). Frog. Water Tech., 9, 777.Google Scholar
  239. Oosterhuis, N.M.G. (1984). Ph.D. thesis, Technical University, Delft, Netherlands.Google Scholar
  240. Ottengraf, S.P.P. (1977). Biotechnol. Bioeng., 19, 1411.Google Scholar
  241. Paca, J., and Gregr, V. (1976). Biotechnol. Bioeng., 18, 1075.Google Scholar
  242. Paca, J., and Gregr, V. (1979). Enzyme Microb. Technol., 1, 100.Google Scholar
  243. Park, Y., et al. (1984). Biotechnol. Bioeng., 26, 457, 468.Google Scholar
  244. Parulekar, S.J., and Lim, H.C. (1985). Adv. Biochem. Eng., 32, 207.Google Scholar
  245. Pickett, A.M. (1982). In Bazin, M. (ed.). Microbial Population Dynamics. Boca Raton, Fla.: CRC Press, Chap. 4.Google Scholar
  246. Pickett, A.M., et al. (1979a). Proc. Biochem., 13, November, 10.Google Scholar
  247. Pickett, A.M., et al. (1979b). Biotechnol. Bioeng., 21, 1043.Google Scholar
  248. Pickett, A.M., et al. (1980). Biotechnol. Bioeng., 22, 1213.Google Scholar
  249. Pirt, S.J. (1974). J. Appl. Chem. Biotechnol., 24, 415.Google Scholar
  250. Pirt, S.J. (1975). Principles of Microbe and Cell Cultivation. Oxford: Blackwell.Google Scholar
  251. Pirt, S.J., and Righelato, R.C. (1967). Appl. Microbiol., 15, 1284.Google Scholar
  252. Pirt, S.J., et al. (1961). J. Gen. Microbiol., 25, 119.Google Scholar
  253. Pirt, S.J., et al. (1983). J. Chem. Tech. Biotechnol., 33B, 35.Google Scholar
  254. Powell, O., and Lowe, J.R. (1964). In Malek, I., et al. (eds.). Continuous Cultivation of Microorganisms. Prague: Czechoslovak Academy of Science, p. 45.Google Scholar
  255. Powell, O., et al. (1967). Microbial Physiology and Continuous Culture. London: Her Majesty’s Stationery Office.Google Scholar
  256. Prochazka, J., and Landau, J. (1961). Colin. Czech. Chem. Commun., 26, 2961.Google Scholar
  257. Pye, E.K., and Humphrey, A.E. (1979). Interim Report to U.S. Department of Energy, p. 79.Google Scholar
  258. Rautenbach, R., and Albrecht, R. (1982). Chem. Ing. Techn., 54, 229.Google Scholar
  259. Regan, D.L., et al. (1971). Biotechnol. Bioeng., 13, 815.Google Scholar
  260. Reisinger, C., et al. (1987). Paper at 5th International Conference on partition in Aqueous Two-Phase Systems, Oxford August 23–28.Google Scholar
  261. Remson, I., et al. (1971). Numerical Methods in Subsurface Hydrology. New York: John Wiley.Google Scholar
  262. Reuss, M., et al. (1979). Europ. J. Appl. Microbiol. Biotechnol., 8, 169.Google Scholar
  263. Reuss, M., and Buchholz, K. (1979). Biotechnol. Bioeng., 21, 2061.Google Scholar
  264. Reuss, M., et al. (1980). Paper presented at 6th Internat. Ferment. Symp., London, Ontario.Google Scholar
  265. Reuss, M., et al. (1982). Chem. Eng., June, 233.Google Scholar
  266. Reusser, F. (1961). Appl. Microbiol., 9, 361.Google Scholar
  267. Ricica, J. (1969a). In Perlman, D. (ed.). Fermentation Advances. New York: Academic Press, p. 427.Google Scholar
  268. Ricica, J. (1969b). Folio Microbiol., 14, 322.Google Scholar
  269. Ricica, J. (1973). Folic Microbiol., 18, 418.Google Scholar
  270. Ricica, J., and Necinova, S. (1967). Mitteil. d. Versuchsstation f. Gärungsgewerbe Wien. 11 /12, 130.Google Scholar
  271. Ringpfeil, M. (1980). Paper presented at 6th Internat. Ferm. Symp., London, Ontario.Google Scholar
  272. Rippin, D.W.T. (1967). Ind. Eng. Chem. Fundam., 6 (4), 488.Google Scholar
  273. Rittmann, B.E. (1982). Biotechnol. Bioeng., 24, 501 and 1341.Google Scholar
  274. Rittmann, B.E., and McCarty, P.L. (1980). Biotechnol. Bioeng., 22, 2349, 2359.Google Scholar
  275. Roels, J.A. (1980a). Biotechnol. Bioeng., 22, 23.Google Scholar
  276. Roels, J.A. (1980b). Biotechnol. Bioeng., 22, 2457.Google Scholar
  277. Roels, J.A. (1982). J. Chem. Techn. Biotechnol., 32, 59.Google Scholar
  278. Roels, J.A. (1983). Energetics and Kinetics in Biotechnology. Amsterdam: Elsevier Biomedical.Google Scholar
  279. Roels, J.A., and van Suijdam, J.C. (1980). Biotechnol. Bioeng., 22, 463.Google Scholar
  280. Rods, J.A., et al. (1974). Biotechnol. Bioeng., 16, 181.Google Scholar
  281. Rogers, P.L., et al. (1980). In Ghose, T.K. (ed.). Proceedings of the Second Symposium on Bioconversion and Biochemical Engineering, Vol. 2. Indian Inst. Technology, New Delhi p. 359.Google Scholar
  282. Romanovsky, J., et al. (1974). Kinetische Modelle in der Biophysik. Jena: G. Fischer. (German translation by W.A. Knorre and A. Knorre).Google Scholar
  283. Russel, R.M., and Tanner, R.D. (1978). Ind. Eng. Chem. Proc. Des. Dev., 17, 157.Google Scholar
  284. Russel, T.W.F., et al. (1974). Biotechnol. Bioeng., 16, 1261.Google Scholar
  285. Ryu, D.D.Y., and Lee, B.K. (1975). Proc. Biochem., 10 January/February, 15.Google Scholar
  286. Ryu, Y.W., et al. (1982). Eur. J. Appl. Microbiol. Biotechnol., 15, 1.Google Scholar
  287. Schneider, H., and Moser, A. (1987). Bioprocess Eng., 2, 129.Google Scholar
  288. Schügerl, K. (1977). Chem. Ing. Techn., 49, 605.Google Scholar
  289. Schügerl, K. (1982). Adv. Biochem. Eng., 22, 94.Google Scholar
  290. Schügerl, K. (1983). In Proceedings of NATO ASI, Mass Transfer with Chemical Reactions, Izmir Turkey (1981) Vol. 1 (72), 415.Google Scholar
  291. Schultz, J.S., and Gerhardt, P. (1969). Bact. Rev., 33, 1.Google Scholar
  292. Seipenbusch, R., and Blenke, H. (1980). Adv. Biochem. Eng., 15, 1.Google Scholar
  293. Sheintuch, M. (1980). Biotechnol. Bioeng., 22, 2557.Google Scholar
  294. Sherrard, J.H. (1977). J. Water Poll. Contr. Fed., 49, 1968.Google Scholar
  295. Sherrard, J.H., and Lawrence, A.W. (1975). J. Water Poll. Contr. Fed., 47, 1848.Google Scholar
  296. Sherrard, J.H. (1980). J. Chem. Techn. Biotechnol., 30, 447.Google Scholar
  297. Sherrard, J.H., and Schroeder, E.D. (1976). J. Water Poll. Contr. Fed., 48, 742.Google Scholar
  298. Shieh, W.K. (1980a). Water Res., 14, 695.Google Scholar
  299. Shieh, W.K. (1980b). Biotechnol. Bioeng., 22, 667.Google Scholar
  300. Shieh, W.K., et al. (1981). J. Water Poll. Contr. Fed., 53, 1574.Google Scholar
  301. Shieh, W.K., et al. (1981). J. Water Poll. Contr. Fed., 53, 1574.Google Scholar
  302. Shimmons, B.W., et al. (1976). Biotechnol. Bioeng., 18, 1793.Google Scholar
  303. Shiotani, T., and Yamane, T. (1981). Eur. J. Appl. Microbiol. Biotechnol., 13, 96.Google Scholar
  304. Sinclair, C.C., and Brown, D.E. (1970). Biotechnol. Bioeng., 12, 1001.Google Scholar
  305. Solomon, B.O., and Erickson, L.E. (1981). Proc. Biochem., February/March, 44.Google Scholar
  306. Sortland, L., and Wilke, Ch.R. (1969). Biotechnol. Bioeng., 11, 805.Google Scholar
  307. Stenberg, O. (1984). Ph.D. thesis, TU Göteborg/Sweden.Google Scholar
  308. Stieber, R.W., and Gerhardt, P. (1979). Appl. Environ. Microbiol., 37, 487.Google Scholar
  309. Stieber, R.W., and Gerhardt, P. (1981a). Biotechnol. Bioeng., 23, 523.Google Scholar
  310. Stieber, R.W., and Gerhardt, P. (1981b). Biotechnol. Bioeng., 23, 535.Google Scholar
  311. Stieber, R.W., et al. (1977). Appl. Environ. Microbiol., 34, 733.Google Scholar
  312. Stiebitz, O., et al. (1987). Knorre, W. (ed.). Proceedings of the UNESCO-training course, Modern Biotechnology: Optimization of Fermentation Processes, Jena, East Germany, Oct. 12–31.Google Scholar
  313. Stucki, J.W. (1978). Prog. Biophys. Molec. Biol., 33, 99.Google Scholar
  314. Sundstrom, D.W., et al. (1976). Biotechnol. Bioeng., 18, 1.Google Scholar
  315. Swartz, R.W. (1979). Ann. Rep. Ferm. Proc., 3, 75.Google Scholar
  316. Tempest, D.W. (1970), In Norris, J.R., and Ribbons, D.W. (eds.). Methods in Microbiology, Vol. 2. Academic Press, London, N.Y. p. 259.Google Scholar
  317. Toda, K., and Dunn, I.J. (1982). Biotechnol. Bioeng., 24, 651.Google Scholar
  318. Topiwala, H.H. (1974). Biotechnol. Bioeng. Symp., 4, 681.Google Scholar
  319. Topiwala, H.H., and Hamer, G. (1971). Biotechnol. Bioeng., 13, 919.Google Scholar
  320. Trilli, A., et al. (1977). J. Appl. Chem. Biotechnol., 27, 219.Google Scholar
  321. Tsai, B.I., Erickson, L.E., and Fan, L.T. (1969). Biotechnol. Bioeng., 11, 181.Google Scholar
  322. Tsai, B.I., Fan, L.T., Erickson, L.E., and Chen, M.S.K. (1971). J. Appl. Chem. Biotechnol., 21, 307.Google Scholar
  323. Tyagi, R.D., and Ghose, T.K. (1980). Biotechnol. Bioeng., 22, 1907.Google Scholar
  324. Vand, W. (1948). J. Phys. & Colloid. Chem., 52, 277.Google Scholar
  325. van Dedem, G., and Moo-Young, M. (1973). Biotechnol. Bioeng., 17, 1301.Google Scholar
  326. van Suijdam, J.C. (1987). In Crueger, W., et al. (eds.). Physical Aspects of Bioreactor Performance report of working party Bioreactor Performance of Europ. Fed., Biotechnol. Frankfurt: Dechema. Chap. 6.Google Scholar
  327. van Suijdam, J.C., and Metz, B. (1981). Biotechnol. Bioeng., 23, 111.Google Scholar
  328. van Suijdam, J.C., et al. (1982). Biotechnol. Bioeng., 24, 177.Google Scholar
  329. van Suijdam, J.C. (1986). Paper at 14th Intern. Congr. of Microbiol., Manchester Sept. 7–13.Google Scholar
  330. van Suijdam, J.C., and Dusseljee, P.J.B. (1987). In Crueger, W., et al. (eds.). Physical Aspects of Bioreactor Preformance report working party Bioreactor Performance, Europ. Fed. Biotechnology, Chap. 6, Dechema, Frankfurt.Google Scholar
  331. van de Vusse, J.G. (1964). Chem. Eng. Sci., 19, 994.Google Scholar
  332. Warmoeskerken, M., and Smith, J.M. (1982). Paper G1 at 4th Europ. Conference on Mixing Noordwijkerhout, Netherlands.Google Scholar
  333. Wandrey, C., and Flaschel, E. (1979). Adv. Biochem. Eng., 12, 148.Google Scholar
  334. Wandrey, C., Flaschel, E., and Schügerl, K. (1979). Biotechnol. Bioeng., 21, 1649.Google Scholar
  335. Wittier, R. et al. (1983). Eur. J. Appl. Microbiol. Biotechnol. 18, 17.Google Scholar
  336. Whitaker, A. (1980). Proc. Biochem., May, 10.Google Scholar
  337. Wolfbauer, O., Klettner, H., and Moser, F. (1978). Chem. Eng. Sci., 33, 953.Google Scholar
  338. Woods, J.L., and O’Callaghan, J.R. (1975). Biotechnol. Bioeng., 17, 779.Google Scholar
  339. Wright, D.G., and Calam, C.T. (1968). Chem. Ind., 1274.Google Scholar
  340. Wu, Y.C., et al. (1980). Biotechnol. Bioeng., 22, 2055.Google Scholar
  341. Yamane, T., and Hirano, S. (1977). J. Ferment. Technol., 55, 156.Google Scholar
  342. Yamane, T., and Shimizu, S. (1982). Biotechnol. Bioeng., 24, 2731.Google Scholar
  343. Yamane, T., and Shimizu, S. (1984). Adv. Biochem. Eng., 30, 148.Google Scholar
  344. Yang, Ren der, and Humphrey, A.E. (1975). Biotechnol. Bioeng., 17, 1211.Google Scholar
  345. Yano, T., and Koga, S. (1973). J. Gen. Appl. Microbiol., 19, 97.Google Scholar
  346. Yoshida, F., et al. (1973). Biotechnol. Bioeng., 15, 257.Google Scholar
  347. Zeuthen, E., (ed.) (1964). Synchrony in Cell Division and Growth. New York: Interscience.Google Scholar
  348. Ziegler, H. (1980). Biotechnol. Bioeng., 22, 1613.Google Scholar
  349. Ziegler, H., et al. (1977). Biotechnol. Bioeng., 19, 507.Google Scholar
  350. Zlokarnik, M. (1978). Adv. Biochem. Eng., 8, 133.Google Scholar
  351. Zlokarnik, M. (1979). Adv. Biochem. Eng., 11, 157.Google Scholar
  352. Zwietering, Th.N. (1959). Chem. Eng. Sci., 11, 1.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Anton Moser
    • 1
  1. 1.Institut für Biotechnologie, Mikrobiologie und AbfalltechnologieTechnische Universität GrazGrazAustria

Personalised recommendations