Skip to main content

Inequalities for γ and Related Critical Exponents in Short and Long Range Percolation

  • Chapter
Percolation Theory and Ergodic Theory of Infinite Particle Systems

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 8))

Abstract

We relate the cluster size distribution Pn(p) at the percolation critical point, p = p|1c|0, to the critical exponent γ (ΣnPn(p) ≈ |pc — p| as p ↑ pc). If P(pc) > 0 (i.e., if P(p) is discontinuous at p = pc), then γ ≥ 2. If Pn(pc) ≈ n-1–1/δ as n → ∞, then γ ≥ 2(1 – 1/δ). Related inequalities are yalid for γr (ΣnrPn(p) ≈ |pc — p| r P as p ↑ pc) and γ 'r (defined analogously as p ↓ pc) when r > 1/δ: γr, γ 'r ≥ 2(r — 1/δ). These results are yalid for Bernoulli site or bond percolation on d-dimensional lattices for any d with p the site or bond occupation probability. They are also valid for long range translation invariant Bernoulli bond percolation with p the occupation probability for bonds of some given length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenman, M. and Barsky, D. J., Proof of the sharpness of the phase transition in translation invariant percolation models, Rutgers University preprint, in preparation.

    Google Scholar 

  2. Aizenman, M., Chayes, J. T., Chayes, L., Imbrie, J. and Newman, C. M., An intermediate phase with slow decay of correlations in one-dimensional 1/|x — y|2 percolation, Ising and Potts models, in preparation.

    Google Scholar 

  3. Aizenman, M., Kesten, H. and Newman, C. M., Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation, Rutgers University/Cornell University/University of Arizona preprint, in preparation.

    Google Scholar 

  4. Aizenman, M. and Newman, C. M., Tree graph inequalities and critical behavior in percolation models, J. Stat. Phys. 36 (1984), 107–143.

    Article  MathSciNet  MATH  Google Scholar 

  5. Aizenman, M. and Newman, C. M., Discontinuity of the percolation density in one-dimensional 1/|x – y|2 percolation models, Rutgers University/University of Arizona preprint, 1986.

    Google Scholar 

  6. van den Berg, J. and Keane, M., On the continuity of the percolation probability function, Contemporary Mathematics 26 (1984), 61–65.

    MATH  Google Scholar 

  7. Chayes, J. T. and Chayes, L., An inequality for the infinite cluster density in Bernoulli percolation, Phys. Rev. Lett. 56 (1986), 1619–1622.

    Article  MathSciNet  Google Scholar 

  8. Chayes, J. T., Chayes, L. and Newman, C. M., Bernoulli percolation above threshold: an invasion percolation analysis, Ann. Prob., to appear.

    Google Scholar 

  9. Grimmett, G. R., On the differentiability of the number of clusters per vertex in the percolation model, J. London Math. Soc. (2) 23 (1981), 372–384.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hammersley, J. M., Percolation processes. Lower bounds for the critical probability, Ann Math. Statist. 28 (1957), 790–795.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kesten, H., The critical probability of bond percolation on the square lattice equals 1/2, Comm. Math. Phys. 74 (1980), 41–59.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kesten, H., Percolation Theory for Mathematicians, Birkhauser, 1982.

    MATH  Google Scholar 

  13. Kesten, H., A scaling relation at criticality for 2D-percolation, in Proceedings of the IMA workshop on percolation theory and ergodic theory of infinite particle systems (H. Kesten, Ed.), IMA Volumes in Mathematics and its Applications, Springer-Verlag, to appear.

    Google Scholar 

  14. Kesten, H., Scaling relations for 2D-percolation, Institute for Mathematics and its Applications (Minneapolis) preprint, 1986.

    Google Scholar 

  15. Klein, S. T. and Shamir, E., An algorithmic method for studying percolation clusters, Stanford Univ. Dept. of Computer Science, Report No. STAN-CS-82–933 (1982).

    Google Scholar 

  16. Newman, C. M. Shock waves and mean field bounds. Concavity and analyticity of the magnetization at low temperature, University of Arizona preprint (1981), published as an appendix to Percolation theory: a selective survey of rigorous results, to appear in Proceedings of the SIAM Workshop on Multiphase Flow (G. Papanicolaou, Ed.).

    Google Scholar 

  17. Newman, C. M., Some critical exponent inequalities for percolation, J. Stat. Phys., to appear.

    Google Scholar 

  18. Newman, C. M. and Schulman, L. S., One-dimensional 1/|j – i|s percolation models: the existence of a transition for s ≤ 2, Comm. Math. Phys. 104 (1986), 547–571.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pike, R. and Stanley, H. E., Order propagation near the percolation threshold, J. Phys. A 14 (1981), L169–L177.

    Article  Google Scholar 

  20. Russo, L., On the critical percolation probabilities, Z. Wahrsch. verw. Geb. 56 (1981), 229–237.

    Article  MATH  Google Scholar 

  21. Schulman, L. S., Long range percolation in one dimension, J. Phys. A Lett. 16 (1983), L639–L641.

    MathSciNet  Google Scholar 

  22. Stauffer, D., Scaling properties of percolation clusters, in Disordered Systems and Localization (C. Oastellani, C. DiCastro and L. Peliti, Eds.), Springer, 1981, 9–25.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Newman, C.M. (1987). Inequalities for γ and Related Critical Exponents in Short and Long Range Percolation. In: Kesten, H. (eds) Percolation Theory and Ergodic Theory of Infinite Particle Systems. The IMA Volumes in Mathematics and Its Applications, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8734-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8734-3_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8736-7

  • Online ISBN: 978-1-4613-8734-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics