Metastable Harmonic Maps

  • Haim Brezis
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 3)


The purpose of this lecture is to discuss a simple system with at least two distinct equilibrium states. The first state is an absolute minimum of the energy. The second state is a local minimum which exhibits some of the features of both stable and unstable equilibria.


Liquid Crystal Absolute Minimum Unstable Equilibrium Partial Regularity Unique Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Brezis, Some variational problems with lack of compactness, Proc. Symp. Nonlinear Functional Analysis, Berkeley, 1984, AMS.Google Scholar
  2. [2]
    H. Brezis — J.M. Coron, Multiple solutions of H-systems and Rellich’s conjecture, Comm. Pure Appl. Math. 37 (1984) p. 149–187.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    H. Brezis — J.M. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983) p. 203–215.MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    H. Brezis — J.M. Coron — E. Lieb, in preparation.Google Scholar
  5. [5]
    H. Brezis — L. Nirenberg, Positive solutions of nonlinear elliptic equations invoving critical Sobolev exponents, Comm. Pure. Appl. Math. 36 (1983) p. 433–477.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J.L. Ericksen — D. Kinderlehrer, eds., Proceedings of the IMA Workshop on the Theory and Applications of Liquid Crystals, Minneapolis, Jan. 1985.Google Scholar
  7. [7]
    M. Giaquinta — S. Hildebrandt, A priori estimates for harmonic mappings, J. Reine Angew. Math. 336 (1982) p. 124–164.MathSciNetCrossRefGoogle Scholar
  8. [8]
    R. Hardt — D. Kinderlehrer — F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys. (to appear).Google Scholar
  9. [9]
    R. Hardt — F.H. Lin in preparation.Google Scholar
  10. [10]
    J. Jost, The Dirichlet problem for harmonic maps from a surface with boundary onto a 2-sphere with nonconstant boundary values, J. Diff. Geom. 19 (1984) p. 393–401.MathSciNetMATHGoogle Scholar
  11. [11]
    L. Lemaire, Applications harmoniques de surfaces riemanniennes, J. Diff. Geom. 13 (1978) p. 51–78.MathSciNetMATHGoogle Scholar
  12. [12]
    L. Nirenberg, Topics in Nonlinear Functional Analysis, N.Y.U. Lecture Notes 1973–74.Google Scholar
  13. [13]
    R. Schoen — K. Uhlenbeck, Boundary regularity and miscellaneous results on harmonic maps, J. Diff. Geom. 18 (1983) p. 253–268.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Haim Brezis
    • 1
  1. 1.Département of MathématiquesUniversité Paris VIParis Cedex 05France

Personalised recommendations