Metastable Harmonic Maps

  • Haim Brezis
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 3)


The purpose of this lecture is to discuss a simple system with at least two distinct equilibrium states. The first state is an absolute minimum of the energy. The second state is a local minimum which exhibits some of the features of both stable and unstable equilibria.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Brezis, Some variational problems with lack of compactness, Proc. Symp. Nonlinear Functional Analysis, Berkeley, 1984, AMS.Google Scholar
  2. [2]
    H. Brezis — J.M. Coron, Multiple solutions of H-systems and Rellich’s conjecture, Comm. Pure Appl. Math. 37 (1984) p. 149–187.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    H. Brezis — J.M. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983) p. 203–215.MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    H. Brezis — J.M. Coron — E. Lieb, in preparation.Google Scholar
  5. [5]
    H. Brezis — L. Nirenberg, Positive solutions of nonlinear elliptic equations invoving critical Sobolev exponents, Comm. Pure. Appl. Math. 36 (1983) p. 433–477.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J.L. Ericksen — D. Kinderlehrer, eds., Proceedings of the IMA Workshop on the Theory and Applications of Liquid Crystals, Minneapolis, Jan. 1985.Google Scholar
  7. [7]
    M. Giaquinta — S. Hildebrandt, A priori estimates for harmonic mappings, J. Reine Angew. Math. 336 (1982) p. 124–164.MathSciNetCrossRefGoogle Scholar
  8. [8]
    R. Hardt — D. Kinderlehrer — F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys. (to appear).Google Scholar
  9. [9]
    R. Hardt — F.H. Lin in preparation.Google Scholar
  10. [10]
    J. Jost, The Dirichlet problem for harmonic maps from a surface with boundary onto a 2-sphere with nonconstant boundary values, J. Diff. Geom. 19 (1984) p. 393–401.MathSciNetMATHGoogle Scholar
  11. [11]
    L. Lemaire, Applications harmoniques de surfaces riemanniennes, J. Diff. Geom. 13 (1978) p. 51–78.MathSciNetMATHGoogle Scholar
  12. [12]
    L. Nirenberg, Topics in Nonlinear Functional Analysis, N.Y.U. Lecture Notes 1973–74.Google Scholar
  13. [13]
    R. Schoen — K. Uhlenbeck, Boundary regularity and miscellaneous results on harmonic maps, J. Diff. Geom. 18 (1983) p. 253–268.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Haim Brezis
    • 1
  1. 1.Département of MathématiquesUniversité Paris VIParis Cedex 05France

Personalised recommendations