Skip to main content

The Stability and Metastability of Quartz

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 3))

Abstract

In phase transformations, metastability is associated with a transformation temperature on heating which differs from the transformation temperature on cooling. The phenomenon is especially prevalent in solids. From an intuitive point of view, the failure of the body to be “absolutely stable” is a consequence of the observation that at a given temperature and pressure, which would ordinarily cause the body to adopt a well-determined configuration, more than one configuration is observed. If we compare this behavior with, say, a minimum free energy calculation in the spirit of Gibbs, we find that only one configuration minimizes what is thought to be the appropriate free energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Gibbs, “On the equilibrium of heterogeneous substances”, Trans. Conn. Acad. Ill (1875–1878), p. 108 and p.343.

    Google Scholar 

  2. G. van Tendeloo, J. van Landuyt and S. Amelinckx, “The a-ß phase transition in quartz and AIPO4, as studied by electron microscopy and diffraction”, Phys. Stat. Sol. a 33 (1976), p. 723.

    Article  ADS  Google Scholar 

  3. R.S. Coe and M.S. Paterson, “The a-ß inversion in quartz: a coherent phase transition under nonhydrostatic stress”, J. Geophys. Res. 74 (1976), p. 921.

    Google Scholar 

  4. L.A. Thomas and W.A. Wooster, “Piezocrescence — the growth of Dauphine twinning under stress”, Proc R. Soc. A2Q8 (1951), p. 43.

    ADS  Google Scholar 

  5. R.S. Rivlin, “Some thoughts on material stability” in Finite Elasticity (ed. D.E. Carlson and R.T. Shield), Martinus Nijhoff (1982).

    Google Scholar 

  6. J.L. Ericksen, “Multi-valued strain energy functions for crystals”, Int. J. Solids Struct. 18, (1982), p. 913.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.O. James, “Displacive phase transformations in solids”, to appear.

    Google Scholar 

  8. M. Pitteri, “On (v+ 1)-lattices”, J. Elasticity 15 (1985), p. 3.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.L. Ericksen, “Nonlinear elasticity of diatomic crystals”, Int. J. Solids Struct. 6 (1970), p. 951.

    Article  Google Scholar 

  10. G.P. Parry, “On phase transitions involving internal strain”, Int. J. Solids Struct. 17 (1981), p. 361.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Berger, L. Eyraud, M. Richard and R. Rivière, “Étude radiocristallograpique de variation de volume pour quelques matériaux subissant des transformations de phase solide-solide”, Bull. Soc. Chim. France (1966), p. 628.

    Google Scholar 

  12. C. Berger, M. Richard and L. Eyraud, “Applications de la microcalorimetrie a la determination precise des variations d’enthalpie de quelques transformations solide-solide”, Bull. Soc. Chim. France (1965), p. 1491.

    Google Scholar 

  13. W.A. Wooster and N. Wooster, Nature 157 (1946), p. 405.

    Article  ADS  Google Scholar 

  14. P. Vigoureux, Quartz Resonators and Oscillators, H.M. Stationery Office (1931).

    Google Scholar 

  15. J.M. Bail, “Constitutive inequalities and existence theorems in nonlinear elastostatics”, in Nonlinear Analysis and Mechanics, Vol. 1 (ed. R.J. Knops), Pitman (1977).

    Google Scholar 

  16. M.E. Gurtin, An Introduction to Continuum Mechanics, Academic Press (1981).

    MATH  Google Scholar 

  17. R. Pego, “Phase Transitions in one Dimensional Nonlinear Viscoelasticity: Admissibility and Stability”, to appear in IMA Volumes and its Applications, Dynamical Problems in Continuum Physics, Springer Verlag.

    Google Scholar 

  18. L.D. Landau and E.M. Lifshits, Statistical Physics, 3rd edition, (Trans. J.B. Stykes and M.J. Kearsley), Pergamon (1980).

    Google Scholar 

  19. M. Achenbach and I. Müller, “Creep and yield in martensitic transformations”, Ingenieur Archiv (in press).

    Google Scholar 

  20. J.H. Wiener, Statistical Mechanics of Elasticity, John Wiley and Sons (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

James, R.D. (1987). The Stability and Metastability of Quartz. In: Antman, S.S., Ericksen, J.L., Kinderlehrer, D., Müller, I. (eds) Metastability and Incompletely Posed Problems. The IMA Volumes in Mathematics and Its Applications, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8704-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8704-6_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8706-0

  • Online ISBN: 978-1-4613-8704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics