Advertisement

The Solution of Completely Integrable Systems in the Continuum Limit of the Spectral Data

  • Stephanos Venakides
Conference paper
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 2)

Abstract

In this talk I wish to outline a procedure for studying the solution of completely integrable evolution equations in a distinguished limit. The procedure is applicable to equations which can be solved by the method of the inverse spectral transformation and have discrete spectral data. The distinguished limit corresponds to the above data tending to a continuum.

Keywords

Continuum Limit Vries Equation Distinguished Limit Quasiperiodic Solution Dispersion Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Date and S. Tanaka “Periodic Multisoliton Solutions of the Korteweg de Vries Equation and Toda Lattice”, Supplement of the Progress of Theoretical Physics No. 59. 1976 pp. 107–125.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    B.A. Dubrovnin, V.B. Mateev, S.P. Novikov, “Nonlinear equations of Korteweg de Vries type, finite zoned linear operators and Abelian varieties” Uspekhi Mat. Nauk 33, 1976, pp. 55–136.Google Scholar
  3. 3.
    H. Flaschka, M.G. Forest and D.W. McLaughlin, “Multiphase Averaging and the Inverse Spectral Solution of hte Korteweg-de Vries Equation” Comm. Pure Appl. Math 33, 1980, pp. 739–784.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, “A method for solving the Korteweg de Vries Equation, Phys. R. Letters, Vol. 19, 1967, pp. 1095–1097.ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    P.D. Lax, “Integrals of Nonlinear Equations of Evolution and Solitary Waves” Comm. Pure Appl. Math. Vol 21, 1968, pp. 467–490.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    P.D. Lax and C.D. Levermore, “The Small Dispersion Limit of the Korteweg de Vries Equation” I,II,III Comm. Pure Appl. Math 36, 1983, pp. 253–290MathSciNetzbMATHCrossRefGoogle Scholar
  7. 6a.
    P.D. Lax and C.D. Levermore, “The Small Dispersion Limit of the Korteweg de Vries Equation” I,II,III Comm. Pure Appl. Math 36, 1983, 571–594MathSciNetzbMATHCrossRefGoogle Scholar
  8. 6b.
    P.D. Lax and C.D. Levermore, “The Small Dispersion Limit of the Korteweg de Vries Equation” I,II,III Comm. Pure Appl. Math 36, 1983, 809–829.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 7.
    H.P. McKean and P. van Moerbeke, “The Spectrum of Hill’s Equation” Inventiones Math. 30, 1975, pp. 217–374.ADSzbMATHCrossRefGoogle Scholar
  10. 8.
    H.P. McKean and E. Trubowitz, “Hill’s Operator and Hyperelliptic Function Theory in the PResence of Infinitely Many Branch Points”, Comm. Pure Appl. Math 29, 1976, pp. 146–226.MathSciNetGoogle Scholar
  11. 9.
    R.M. Miura, C.D. Gardner and M.D. Kruskal, Korteweg de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion”. J. Math. Phys. Vol. 9, 1968, pp. 1204–1209.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 10.
    S. Venakides “The Zero Dispersion Limit of the Korteweg de Vries Equation with Non-Trivial Reflection Coefficient” Comm. Pure Appl. Math Vol. 38, 1985. p. 125–155.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 11.
    S. Venakides, “The Generalization of Modulated Wavetrains in the Solution of the Korteweg de Vries Equation” Comm. Pure Appl. Math., to appear.Google Scholar
  14. 12.
    S. Venakides “The Zero Dispersion Limit of the Korteweg de Vries Equation with Periodic Initial Data, AMS Transaction, to appear.Google Scholar
  15. 13.
    G.B. Whitham, “Linear and Nonlinear Waves” Wiley Intersience, New York, 1974.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Stephanos Venakides
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations