Advertisement

Jacobian Varieties

  • J. S. Milne
Chapter

Abstract

This chapter contains a detailed treatment of Jacobian varieties. Sections 2, 5, and 6 prove the basic properties of Jacobian varieties starting from the definition in Section 1, while the construction of the Jacobian is carried out in Sections 3 and 4. The remaining sections are largely independent of one another.

Keywords

Abelian Variety Effective Divisor Cartier Divisor Closed Subscheme Invertible Sheaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Artin, M. Néron models, this volume, pp. 213–230.Google Scholar
  2. [2]
    Bourbaki, N. Algèbre Commutative. Hermann: Paris, 1961, 1964, 1965.Google Scholar
  3. [3]
    Chow, W.-L. The Jacobian variety of an algebraic curve. Amer. J. Math., 76 (1954), 453–476.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Grothendieck, A. Technique de descente et théorèmes d’existence en géométrie algébrique, I-VI. Séminaire Bourbaki, Éxposés 190 1959–62.Google Scholar
  5. [4]
    Grothendieck, A. Technique de descente et théorèmes d’existence en géométrie algébrique, I-VI. Séminaire Bourbaki, Éxposés 195, 1959–62.Google Scholar
  6. [4]
    Grothendieck, A. Technique de descente et théorèmes d’existence en géométrie algébrique, I-VI. Séminaire Bourbaki, Éxposés 212, 1959–62.Google Scholar
  7. [4]
    Grothendieck, A. Technique de descente et théorèmes d’existence en géométrie algébrique, I-VI. Séminaire Bourbaki, Éxposés 221, 1959–62.Google Scholar
  8. [4]
    Grothendieck, A. Technique de descente et théorèmes d’existence en géométrie algébrique, I-VI. Séminaire Bourbaki, Éxposés 232 1959–62.Google Scholar
  9. [4]
    Grothendieck, A. Technique de descente et théorèmes d’existence en géométrie algébrique, I-VI. Séminaire Bourbaki, Éxposés 236, 1959–62.Google Scholar
  10. [5]
    Grothendieck, A. Revêtements Étales et Groupe Fondamental (SGA1, 1960–61). Lecture Notes in Mathematics, 224, Springer-Verlag: Heidelberg, 1971.Google Scholar
  11. [6]
    Grothendieck, A. Le groupe de Brauer, III, in Dix Exposés sur la Cohomologie des Schémas. North-Holland: Amsterdam, 1968, pp. 88–188.Google Scholar
  12. [7]
    Grothendieck, A. and Dieudonné, J. Eléments de Géométrie Algébrique, I. Springer-Verlag: Heidelberg, 1971.MATHGoogle Scholar
  13. [8]
    Hartshorne, R. Algebraic Geometry. Springer-Verlag: Heidelberg, 1977.MATHGoogle Scholar
  14. [9]
    Lang, S. Abelian Varieties. Interscience: New York, 1959.Google Scholar
  15. [10]
    Lang, S. Fundamentals of Diophantine Geometry. Springer-Verlag: Heidelberg, 1983.MATHGoogle Scholar
  16. [11]
    Lichtenbaum, S. Duality theorems for curves over p-adic fields. Invent. Math., 7 (1969), 120–136.MathSciNetMATHCrossRefGoogle Scholar
  17. [12]
    Mattuck, A and Mayer, A. The Riemann-Roch theorem for algebraic curves. Ann. Sci. Norm. Pisa, 17, (1963), 223–237.MathSciNetMATHGoogle Scholar
  18. [13]
    Milne, J. Etale Cohomology. Princeton University Press: Princeton, NJ, 1980.MATHGoogle Scholar
  19. [14]
    Milne, J. Abelian varieties, this volume, pp. 103–150.Google Scholar
  20. [15]
    Mumford, D. Lectures on Curves on an Algebraic Surface. Princeton University Press: Princeton, NJ, 1966.MATHGoogle Scholar
  21. [16]
    Mumford, D. Abelian Varieties. Oxford University Press: Oxford, 1970.MATHGoogle Scholar
  22. [17]
    Serre, J.-P. Groupes Algébriques et Corps de Classes. Hermann, Paris, 1959.MATHGoogle Scholar
  23. [18]
    Shafarevich, I. Basic Algebraic Geometry. Springer-Verlag: Heidelberg, 1974.MATHGoogle Scholar
  24. [19]
    Waterhouse, W. Introduction to Affine Group Schemes. Springer-Verlag: Heidelberg, 1979.MATHGoogle Scholar
  25. [20]
    Weil, A. Variétes Abéliennes et Courbes Algébriques. Hermann: Paris, 1948.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • J. S. Milne

There are no affiliations available

Personalised recommendations