Skip to main content

On Bounding the Effective Conductivity of Anisotropic Composites

  • Conference paper
Homogenization and Effective Moduli of Materials and Media

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 1))

Abstract

There has recently been a renewal of interest in bounding the effective moduli of composite materials. Several factors are responsible, including attention to applications in structural optimization [1,18,20,28]. The developments of the past several years include new ways of applying old variational principles such as those of Hashin and Shtrikman. They also include two entirely new methods for proving bounds: one based on compensated compactness, and the other on explicit representation formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armand, J.-L., Lurie, K.A., and Cherkaev, A.V., “Optimal control theory and structural design,” in Optimum Structure Design Vol. 2, R.H. Gallagher; E. Atrek, K. Ragsdell, and O.C. Zienkiewicz, eds., J. Wiley and Sons, 1983.

    Google Scholar 

  2. Bensoussan, A., Lions, J.-L., and Papanicolaou, G., Asymptotic Analysis for Periodic Structures, North-Holland, 1978.

    MATH  Google Scholar 

  3. Bergman, D., “The dielectric constant of a composite material — a problem in classical physics” Phys. Rep. C 43, 1978, pp. 377–407.

    Article  MathSciNet  ADS  Google Scholar 

  4. Christensen, R.M., Mechanics of Composite Materials, Wiley Interscience, 1979.

    Google Scholar 

  5. Dacorogna, B., Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals, Lecture Notes in Math. 922, Springer-Verlag, 19877

    Google Scholar 

  6. De Giorgi, E. and Spagnolo, S., “Sulla convergenza delli integrali dell’energia per operatori ellittici del secondo ordine,” Boll. Un. Mat. Ital. 8, 1978, pp. 291–411.

    Google Scholar 

  7. Ekeland, I. and Temam, R., Convex Analysis and Variational Problems, North-Holland, 1976.

    MATH  Google Scholar 

  8. Gibiansky, L.V. and Cherkaev, A.V., “Design of composite plates of extremal rigidity,” preprint.

    Google Scholar 

  9. Golden, K., “Bounds on the complex permittivity of a multicomponent material” J. Mech. Phys. Solids, to appear.

    Google Scholar 

  10. Golden, K. and Papanicolaou, G., “Bounds for effective parameters of heterogeneous media by analytic continuation,” Comm. Math. Phys. 90, 1983, pg. 473.

    Article  MathSciNet  ADS  Google Scholar 

  11. Golden, K., and Papanicolaou, G., to appear in J. Stat. Phys..

    Google Scholar 

  12. Hashin, Z. “Analysis of composite materials — a survey,” J. Appl. Mech. 50, 1983, pp. 481–505.

    Article  ADS  MATH  Google Scholar 

  13. Hashin, Z. and Shtrikman, S., “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. Appl. Phys. 33, 1962, pp. 3125–3131.

    Article  ADS  MATH  Google Scholar 

  14. Hill, R., “New derivations of some elastic extremum principles,” in Progress in Applied MechanicsPrager Aniversary Volume, Mac Millan, 1963, pp. 99–106.

    Google Scholar 

  15. Y. Kantor and D. Bergman, “Improved rigorous bounds on the effective elastic moduli of a composite material” J. Mech. Phys. Solids 32, 1984, pp. 41–62.

    Article  ADS  MATH  Google Scholar 

  16. Kohn, R. and Dal Maso, G., in preparation.

    Google Scholar 

  17. Kohn, R.V. and Milton, G.W., “Bounds for anisotropic composites by variational principles,” in preparation.

    Google Scholar 

  18. Kohn, R.V. and Strang, G., “Structural design optimization, homogenization, and relaxation of variational problems” in Macroscopic Properties of Disordered Media, R. Burridge, S. Childress, G. Papanicolaou eds., Lecture Notes in Physics 154, Springer-Verlag, 1982, pp. 131–147.

    Chapter  Google Scholar 

  19. Kohn, R.V. and Strang, G., “Optimal design and relaxation of variatonal problems,” to appear in Comm. Pure Appl. Math..

    Google Scholar 

  20. Lurie, K.A. and Cherkaev, A.V., “Optimal structural design and relaxed controls”, Opt. Control Appl. and Meth. 4, 1983, pp. 387–392.

    Article  MATH  Google Scholar 

  21. Lurie, K.A. and Cherkaev, A.V., “Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion,” Proc. Royal Soc. Edinburgh 99A, 1984, pp. 71–87.

    MathSciNet  Google Scholar 

  22. Lurie, K.A. and Cherkaev, A.V., “Exact estimates of the conductivity of a binary mixture of isotropic compounds,” preprint.

    Google Scholar 

  23. Milton, G.W. and McPhedran, R.C., “A comparison of two methods for deriving bounds on the effective conductivity of composites,” in Macroscopic Properties of Disordered Media, R. Burridge, S. Childress, G. Papanicolaou, eds., Lecture Notes in Physics 154, Springer-Verlag, 1982, pp. 183–193.

    Chapter  Google Scholar 

  24. Milton, G.W. and Golden, K., “Thermal conduction in composites” in Thermal Conductivity 18, Plenum Press, 1985.

    Google Scholar 

  25. Murat, F., H-convergence, mimeographed notes, 1978.

    Google Scholar 

  26. Murat, F., “Compacité par compensation,” Ann. Scuola Norm. Sup. Pisa 5, 1978, pp. 489–507.

    MathSciNet  MATH  Google Scholar 

  27. Murat, F. and Francfort, G.A., “Homogenization and optimal bounds in linear elasticity,” to appear in Arch. Rat. Mech. Anal.

    Google Scholar 

  28. Murat, F. and Tartar, L., “Calcul des variations et homogénéisation”, in Les Methodes de l’Homogénéisation: Theorie et Applications en Physique, Coll. de la Dir. des Etudes et Recherches de Electricité de France, Eyrolles, Paris, 1985, pp. 319–370.

    Google Scholar 

  29. Papanicolaou, G. and Varadhan, S., “Boundary value problems with rapidly osciallting random coefficients,” in Colloquia Mathematica Societatis János Bolyai 27, Random Fields, North-Holland, 1982, pg. 835.

    Google Scholar 

  30. Sanchez-Palencia, E., Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics 127, Springer-Verlag, 1980.

    MATH  Google Scholar 

  31. Talbot, D.R.S. and Willis, J.R., “Variational Principles for inhomogeneous nonlinear media,” to appear in IMA J. Appl. Math.

    Google Scholar 

  32. Tartar, L., “Compensated compactness and applications to P.D.E.,” in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium IV, R. Knops, ed., Pitman Press, 1979, pp. 136–212.

    Google Scholar 

  33. Tartar, L., “Estimations fines des coefficients homogénéises,” in Ennio De Giorgi Colloquium, P. Krée, ed., Pitman Press, 1985. See also the article by Tartar in this volume.

    Google Scholar 

  34. Willis, J.R., “Bounds and self-consistent estimates for the overall moduli of anisotropic composites,” J. Mech. Phys. Solids 25, 1977, pp. 185–202.

    Article  ADS  MATH  Google Scholar 

  35. Willis, J.R., “Variational and related methods for the overall properties of composite materials,” in C.-S. Yih, ed., Advances in Applied Mechanics 21, 1981, pp. 2–78.

    Google Scholar 

  36. Willis, J.R., “The overall elastic response of composite materials,” J. Appl. Mech. 50, 1983, pp. 1202–1209.

    Article  ADS  MATH  Google Scholar 

  37. Willis, J.R, “Variational estimates for the overall response of an inhomogeneous nonlinear dielectric,” this volume.

    Google Scholar 

  38. Zhikov, V.V., Kozlov, S.M., Oleinik, O.A., and Ngoan, K.T., “Averaging and G-convergence of differential operators” Russian Math. Surveys, 34, 1979, pp. 69–147.

    Article  ADS  Google Scholar 

  39. Bergman, D., “Rigorous bounds for the complex dielectric constant of a two-component composite” Annals of Physics 138, 1982, pg. 78.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Kohn, R.V., Milton, G.W. (1986). On Bounding the Effective Conductivity of Anisotropic Composites. In: Ericksen, J.L., Kinderlehrer, D., Kohn, R., Lions, JL. (eds) Homogenization and Effective Moduli of Materials and Media. The IMA Volumes in Mathematics and its Applications, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8646-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8646-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8648-3

  • Online ISBN: 978-1-4613-8646-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics