Skip to main content

Variational Bounds on Darcy’s Constant

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 1))

Abstract

Prager’s variational method of obtaining upper bounds on the fluid permeability (Darcy’s constant) for slow flow through porous media is reexamined. By exploiting the freedom one has in choosing the trial stress distributions, several new results are derived. One result is a phase interchange relation for permeability; when the fluid-phase and particle-phase are interchanged for a fixed geometry, we find an upper bound on a linear combination of the complementary permeabilities. Another result is a proof of the monotone properties of the bounds. The optimal two-point bounds from this class of variational principles are evaluated numerically and compared to exact results of low density expansions for assemblages of spheres.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Darcy, “Les fontaines publique de a ville de Dijon,” Paris, 1856.

    Google Scholar 

  2. M, Poreh and C. Elata, “An analytical derivation of Darcy’s law,” Israel J. Tech. 4, 214–217 (1966).

    Google Scholar 

  3. S.P. Neuman, “Theoretical derivation of Darcy’s law,” Acta Mech. 25, 153–170 (1977).

    Article  MATH  Google Scholar 

  4. J.B. Keller, “Darcy’s law for flow in porous media and the two-space method,” in Nonlinear Partial Differential Equations in Engineering and Applied Science, ed. by R.L. Sternberg, A.J. Kalinowski, and J. S. Papadakis (Marcel Dekker, New York, 1980), pp. 429–443.

    Google Scholar 

  5. H.C. Brinkman, “A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles,” Appl. Sci. Res. Al, 27–34 (1947).

    Google Scholar 

  6. S. Childress, “Viscous flow past a random array of spheres,” J. Chem. Phys. 56, 2527–2539 (1972).

    Article  ADS  Google Scholar 

  7. I.D. Howells, “Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects,” J. Fluid Mech. 64, 449–475 (1974).

    Article  ADS  MATH  Google Scholar 

  8. E.J. Hinch, “An averaged-equation approach to particle interactions in a fluid suspension,” J. Fluid Mech. 83, 695–720 (1977).

    Article  ADS  MATH  Google Scholar 

  9. A.A. Zick and G.M. Homsy, “Stokes flow through a periodic array of spheres,” J. Fluid Mech. 115, 13–26 (1982).

    Article  ADS  MATH  Google Scholar 

  10. A.S. Sangani and A. Acrivos, “Slow flow through a periodic array of spheres,” Int. J. Multiphase Flow 8, 343–360 (1982).

    Article  MATH  Google Scholar 

  11. S. Prager, “Viscous flow through porous media,” Phys. Fluids 4, 1477–1482 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. Doi, “A new variational approach to the diffusion and the flow problem in porous media,” J. Phys. Soc. Japan 40, 567–572 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Torquato, “Microscopic approach to transport in two-phase random media,” Ph.D. thesis (State University of New York at Stony Brook, 1980).

    Google Scholar 

  14. J.G. Berryman, “Computing variational bounds for flow through random aggregates of spheres,” J. Comput. Phys. 52, 142–162 (1983).

    Article  ADS  MATH  Google Scholar 

  15. J.G. Berryman, “Bounds on fluid permeability for viscous flow through porous media,” J. Chem. Phys. 82, 1459–1467 (1985).

    Article  ADS  Google Scholar 

  16. J.G. Berryman, “Measurement of spatial correlation functions using image processing techniques,” J. Appl. Phys. 57, 2374–2384 (1985).

    Article  ADS  Google Scholar 

  17. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, (Interscience, New York, 1953), pp. 252–257 and

    Google Scholar 

  18. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, (Interscience, New York, 1953), pp. 268–272.

    Google Scholar 

  19. M.J. Beran, Statistical Continuum Theories (Interscience, New York, 1968), Chapter 6.

    MATH  Google Scholar 

  20. H.L. Weissberg and S. Prager, “Viscous flow through porous media. III. Upper bounds on the permeability for a simple random geometry,” Phys. Fluids 13, 2958–2965 (1970).

    Article  ADS  MATH  Google Scholar 

  21. J.G. Berryman and G.W. Milton, “Normalization constraint for variational bounds on fluid permeability”, J. Chem. Phys., July, 1985.

    Google Scholar 

  22. L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959), p. 54.

    Google Scholar 

  23. H. Lamb, Hydrodynamics (Dover, New York, 1945), pp. 617–619.

    Google Scholar 

  24. J.B. Keller, “A theorem on the conductivity of a composite medium,” J. Mathematical Phys. 5, 548–549 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. K. Schulgasser, “On a phase interchange relationship for composite materials,” J. Mathematical Phys. 17, 378–381 (1976).

    Article  ADS  Google Scholar 

  26. H.L. Weissberg, “Effective diffusion coefficient in porous media,” J. Appl. Phys. 34, 2636–2639 (1963).

    Article  ADS  Google Scholar 

  27. W. Strieder and R. Aris, Variational Methods Applied to Problems of Diffusion and Reaction (Springer-Verlag, New York, 1973), pp. 4–8.

    MATH  Google Scholar 

  28. S. Torquato and G. Stell, “Microstructure of two-phase random media. III. The n-point matrix probability functions for fully penetrable spheres,” J. Chem. Phys. 79, 1505–1510 (1983).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Berryman, J.G. (1986). Variational Bounds on Darcy’s Constant. In: Ericksen, J.L., Kinderlehrer, D., Kohn, R., Lions, JL. (eds) Homogenization and Effective Moduli of Materials and Media. The IMA Volumes in Mathematics and its Applications, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8646-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8646-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8648-3

  • Online ISBN: 978-1-4613-8646-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics